欢迎访问ic37.com |
会员登录 免费注册
发布采购

GT28F640C3TC100 参数 Datasheet PDF下载

GT28F640C3TC100图片预览
型号: GT28F640C3TC100
PDF下载: 下载PDF文件 查看货源
内容描述: [Flash, 4MX16, 100ns, PBGA48, CSP, MICRO, BGA-48]
分类和应用: 内存集成电路
文件页数/大小: 70 页 / 945 K
品牌: NUMONYX [ NUMONYX B.V ]
 浏览型号GT28F640C3TC100的Datasheet PDF文件第2页浏览型号GT28F640C3TC100的Datasheet PDF文件第3页浏览型号GT28F640C3TC100的Datasheet PDF文件第4页浏览型号GT28F640C3TC100的Datasheet PDF文件第5页浏览型号GT28F640C3TC100的Datasheet PDF文件第7页浏览型号GT28F640C3TC100的Datasheet PDF文件第8页浏览型号GT28F640C3TC100的Datasheet PDF文件第9页浏览型号GT28F640C3TC100的Datasheet PDF文件第10页  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
1.0  
Introduction  
This document contains the specifications for the 3 Volt Advanced+ Boot Block flash memory  
family. These flash memories add features which can be used to enhance the security of systems:  
instant block locking and a protection register.  
Throughout this document, the term “2.7 V” refers to the full voltage range 2.7 V–3.6 V (except  
where noted otherwise) and “VPP = 12 V” refers to 12 V ±5%. Section 1.0 and Section 2.0 provide  
an overview of the flash memory family including applications, pinouts, pin descriptions and  
memory organization. Section 3.0 describes the operation of these products, with Section 4.0  
providing the operating specifications. Ordering information is outlined in Section 5.0, and  
additional reference material is located in Section 6.0.  
The 3 Volt Advanced+ Boot Block flash memory features:  
Zero-latency, flexible block locking  
128-bit Protection Register  
Simple system implementation for 12 V production programming with 2.7 V in-field  
programming  
Ultra-low power operation at 2.7 V  
Minimum 100,000 block erase cycles  
Common Flash Interface for software query of device specs and features  
Table 1. 3 Volt Advanced+ Boot Block Feature Summary  
Feature  
8 Mbit(1), 16 Mbit, 32 Mbit(2)  
Reference  
Table 8  
V
V
V
Operating Voltage  
Voltage  
2.7 V – 3.6 V(3)  
CC  
Provides complete write protection with optional 12 V Fast Programming  
Table 8  
PP  
I/O Voltage  
2.7 V– 3.6 V  
16-bit  
CCQ  
Bus Width  
Table 2  
8 Mbit: 90, 110 @ 2.7 V and 80, 100 @ 3.0 V  
16 Mbit: 70, 80, 90, 110 @ 2.7 V and 70, 80, 100 @ 3.0 V  
32 Mbit: 70, 90, 100, 110 @ 2.7 V and 70, 90, 100 @ 3.0 V  
Speed (ns)  
Section 4.4  
64 Mbit: 90, 100 @ 2.7 V and 90, 100 @ 3.0 V  
8 x 4-Kword parameter  
8-Mb: 15 x 32-Kword main  
16-Mb: 31 x 32-Kword main  
32-Mb: 63 x 32-Kword main  
64-Mb: 127 x 32-Kword main  
Appendix 2.2  
Appendix E  
Blocking (top or bottom)  
Operating Temperature  
Program/Erase Cycling  
Extended: –40 °C to +85 °C  
100,000 cycles  
Table 8  
Table 8  
48-Lead TSOP  
Packages  
Figure 1, 2 and 3  
48-Ball µBGA* CSP (1), 48-Ball VF BGA, Easy BGA  
Block Locking  
Flexible locking of any block with zero latency  
Section 3.3  
Section 3.4  
Protection Register  
64-bit unique device number, 64-bit user programmable  
NOTES:  
1. 8-Mbit density not available in µBGA* CSP.  
2. See Specification Update for changes to 32-Mbit devices (order 297938).  
3. V Max = 3.3 V on 0.25µm 32-Mbit devices.  
CC  
3UHOLPLQDU\  
1
28F800C3, 28F160C3, 28F320C3, 28F640C3  
1.1  
Product Overview  
Intel provides secure low voltage memory solutions with the Advanced Boot Block family of  
products. A new block locking feature allows instant locking/unlocking of any block with zero-  
latency. A 128-bit protection register allows unique flash device identification.  
Discrete supply pins provide single voltage read, program, and erase capability at 2.7 V while also  
allowing 12 V VPP for faster production programming. Improved 12 V, a new feature designed to  
reduce external logic, simplifies board designs when combining 12 V production programming  
with 2.7 V in-field programming.  
The 3 Volt Advanced+ Boot Block flash memory products are available in x16 packages in the  
following densities: (see Section 5.0, “Ordering Information” on page 40)  
8-Mbit (8,388,608 bit) flash memories organized as 512 Kwords of 16 bits each  
16-Mbit (16,777,216 bit) flash memories organized as 1024 Kwords of 16 bits each  
32-Mbit (33,554,432 bit) flash memories organized as 2048 Kwords of 16 bits each  
64-Mbit (67,108,864 bit) flash memories organized as 4096 Kwords of 16 bits each  
Eight 4-Kword parameter blocks are located at either the top (denoted by -T suffix) or the bottom  
(-B suffix) of the address map in order to accommodate different microprocessor protocols for  
kernel code location. The remaining memory is grouped into 64-Kbyte main blocks (see Appendix  
E).  
All blocks can be locked or unlocked instantly to provide complete protection for code or data (see  
Section 3.3, “Flexible Block Locking” on page 15 for details).  
The Command User Interface (CUI) serves as the interface between the microprocessor or  
microcontroller and the internal operation of the flash memory. The internal Write State Machine  
(WSM) automatically executes the algorithms and timings necessary for program and erase  
operations, including verification, thereby unburdening the microprocessor or microcontroller. The  
status register indicates the status of the WSM by signifying block erase or word program  
completion and status.  
Program and erase automation allows program and erase operations to be executed using an  
industry-standard two-write command sequence to the CUI. Program operations are performed in  
word increments. Erase operations erase all locations within a block simultaneously. Both program  
and erase operations can be suspended by the system software in order to read from any other  
block. In addition, data can be programmed to another block during an erase suspend.  
The 3 Volt Advanced+ Boot Block flash memories offer two low power savings features:  
Automatic Power Savings (APS) and standby mode. The device automatically enters APS mode  
following the completion of a read cycle. Standby mode is initiated when the system deselects the  
device by driving CE# inactive. Combined, these two power savings features significantly reduce  
power consumption.  
The device can be reset by lowering RP# to GND. This provides CPU-memory reset  
synchronization and additional protection against bus noise that may occur during system reset and  
power-up/down sequences (see Section 3.5 and Section 3.6).  
Refer to Section 4.4, “DC Characteristics” on page 25 for complete current and voltage  
specifications. Refer to Section 4.5 and Section 4.6 for read and write performance specifications.  
Program and erase times and shown in Section 4.7.  
2
3UHOLPLQDU\  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
2.0  
Product Description  
This section provides device pin descriptions and package pinouts for the 3 Volt Advanced+ Boot  
Block flash memory family, which is available in 48-lead TSOP (x16) and 48-ball µBGA and Easy  
BGA packages (Figures 1, 2 and 3, respectively).  
2.1  
Package Pinouts  
Figure 1. 48-Lead TSOP Package  
A15  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
48  
47  
46  
45  
44  
43  
42  
41  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
A16  
A14  
A13  
A12  
A11  
A10  
A9  
VCCQ  
GND  
DQ15  
DQ7  
DQ14  
DQ6  
DQ13  
DQ5  
DQ12  
DQ4  
VCC  
DQ11  
DQ3  
DQ10  
DQ2  
DQ9  
DQ1  
DQ8  
DQ0  
OE#  
GND  
CE#  
A0  
A8  
64 M  
32 M  
A21  
A20  
WE#  
RP#  
VPP  
WP#  
A19  
A18  
A17  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
Advanced+ Boot Block  
48-Lead TSOP  
12 mm x 20 mm  
TOP VIEW  
16 M  
0645_02  
NOTE: Lower densities will have NC on the upper address pins. For example, a 16-Mbit device will have NC on  
Pins 9 and 10.  
3UHOLPLQDU\  
3
28F800C3, 28F160C3, 28F320C3, 28F640C3  
Figure 2. 48-Ball µBGA* and 48-Ball Very Thin Profile Fine Pitch BGA Chip Size Package  
(Top View, Ball Down)  
1
2
3
4
5
6
7
8
16M  
A
B
C
D
E
F
A13  
A11  
A8  
VPP  
WP#  
A19  
A7  
A4  
A14  
A10  
WE#  
A9  
RP#  
A21  
A18  
A17  
A5  
A3  
A2  
A1  
32M  
64M  
A15  
A12  
A20  
A6  
A16  
D14  
D15  
D7  
D5  
D6  
D11  
D12  
D4  
D2  
D3  
D8  
D9  
CE#  
D0  
A0  
VCCQ  
GND  
GND  
OE#  
D13  
VCC  
D10  
D1  
NOTES:  
1. Shaded connections indicate the upgrade address connections. Lower density devices will not have the  
upper address solder balls. Routing is not recommended in this area. A19 is the upgrade address for the  
16-Mbit device. A20 is the upgrade address for the 32-Mbit device. A21 is the upgrade address for the 64-Mbit  
device.  
2. 8-Mbit not available on µBGA* CSP.  
4
3UHOLPLQDU\  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
Figure 3. 8 x 8 Easy BGA Package  
1
2
3
4
5
6
7
8
8
7
6
5
4
3
2
1
A
B
C
A
B
C
A1  
A2  
A3  
A4  
A6  
A18 VPP VCC GND A10  
A15  
A14  
A13  
A9  
A15  
A14  
A13  
A9  
A10 GND VCC VPP A18  
A6  
A1  
A2  
A3  
A4  
(1)  
(1)  
(1)  
(1)  
(1)  
A17 A19  
RP# DU A20  
A11  
A12  
A8  
A11 A20  
DU RP# A19  
A17  
(1)  
A7 WP# WE# DU A21  
A12 A21  
DU WE# WP# A7  
D
D
A5 DU DU DU DU  
A8 DU DU  
DU DU  
A5  
E
F
E
F
DQ8 DQ1 DQ9 DQ3 DQ12 DQ6 DU DU  
CE# DQ0 DQ10 DQ11 DQ5 DQ14 DU DU  
DU DU DQ6 DQ12 DQ3 DQ9 DQ1 DQ8  
DU DU DQ14 DQ5 DQ11 DQ10  
CE#  
DQ0  
G
H
G
H
A0 VSSQ DQ2 DQ4 DQ13 DQ15 GND A16  
A16 GND D15 D13 DQ4 DQ2 VSSQ A0  
(2)  
(2)  
A22 OE# VCCQ VCC VSSQ DQ7 VCCQ  
DU  
DU VCCQ D7 VSSQ VCC VCCQ OE# A22  
Top View - Ball Side Down  
Bottom View - Ball Side Up  
16fast  
NOTES:  
1. A denotes 16 Mbit; A denotes 32 Mbit; A denotes 64 Mbit.  
19  
20  
21  
2. A indicates future density upgrade path to128 Mbit (not yet available).  
22  
3UHOLPLQDU\  
5
28F800C3, 28F160C3, 28F320C3, 28F640C3  
Table 2. 3 Volt Advanced+ Boot Block Pin Descriptions  
Symbol  
Type  
Name and Function  
ADDRESS INPUTS: Memory addresses are internally latched during a program or erase cycle.  
A –A  
INPUT  
0
21  
8-Mbit: A[0-18], 16-Mbit: A[0-19], 32-Mbit: A[0-20], 64-Mbit: A[0-21]  
DATA INPUTS/OUTPUTS: Inputs array data on the second CE# and WE# cycle during a Program  
command. Inputs commands to the Command User Interface when CE# and WE# are active.  
Data is internally latched. Outputs array, configuration and status register data. The data pins float  
to tri-state when the chip is de-selected or the outputs are disabled.  
INPUT/  
OUTPUT  
DQ –DQ  
0
7
DATA INPUTS/OUTPUTS: Inputs array data on the second CE# and WE# cycle during a Program  
command. Data is internally latched. Outputs array and configuration data. The data pins float to  
tri-state when the chip is de-selected.  
INPUT/  
OUTPUT  
DQ –DQ  
8
15  
CHIP ENABLE: Activates the internal control logic, input buffers, decoders and sense amplifiers.  
CE# is active low. CE# high de-selects the memory device and reduces power consumption to  
standby levels.  
CE#  
INPUT  
OUTPUT ENABLE: Enables the device’s outputs through the data buffers during a read  
operation. OE# is active low.  
OE#  
WE#  
INPUT  
INPUT  
WRITE ENABLE: Controls writes to the command register and memory array. WE# is active low.  
Addresses and data are latched on the rising edge of the second WE# pulse.  
RESET/DEEP POWER-DOWN: Uses two voltage levels (V , V ) to control reset/deep power-  
IL  
IH  
down mode.  
When RP# is at logic low, the device is in reset/deep power-down mode, which drives the  
outputs to High-Z, resets the Write State Machine, and minimizes current levels (I ).  
RP#  
INPUT  
INPUT  
CCD  
When RP# is at logic high, the device is in standard operation. When RP# transitions from  
logic-low to logic-high, the device resets all blocks to locked and defaults to the read array mode.  
WRITE PROTECT: Controls the lock-down function of the flexible Locking feature.  
When WP# is a logic low, the lock-down mechanism is enabled and blocks marked lock-down  
cannot be unlocked through software.  
WP#  
When WP# is logic high, the lock-down mechanism is disabled and blocks previously locked-  
down are now locked and can be unlocked and locked through software. After WP# goes low, any  
blocks previously marked lock-down revert to that state.  
See Section 3.3 for details on block locking.  
V
V
SUPPLY  
INPUT  
DEVICE POWER SUPPLY: [2.7 V–3.6 V] Supplies power for device operations.  
I/O POWER SUPPLY: Supplies power for input/output buffers.  
CC  
CCQ  
[2.7 V–3.6 V] This input should be tied directly to V  
.
CC  
PROGRAM/ERASE POWER SUPPLY: [1.65 V–3.6 V or 11.4 V–12.6 V] Operates as a input at  
logic levels to control complete device protection. Supplies power for accelerated program and  
erase operations in 12 V ± 5% range. This pin cannot be left floating.  
Lower V V  
, to protect all contents against Program and Erase commands.  
PP  
PPLK  
Set V = V for in-system read, program and erase operations. In this configuration, V  
PP  
PP  
CC  
INPUT/  
SUPPLY  
can drop as low as 1.65 V to allow for resistor or diode drop from the system supply. Note that if  
is driven by a logic signal, V 1.65. That is, V must remain above 1.65 V to perform in-  
V
PP  
V
PP  
IH =  
PP  
system flash modifications.  
Raise V to 12 V ± 5% for faster program and erase in a production environment. Applying 12 V  
PP  
± 5% to V can only be done for a maximum of 1000 cycles on the main blocks and 2500 cycles  
PP  
on the parameter blocks. V may be connected to 12 V for a total of 80 hours maximum. See  
PP  
Section 3.4 for details on V voltage configurations.  
PP  
GND  
NC  
SUPPLY  
GROUND: For all internal circuitry. All ground inputs must be connected.  
NO CONNECT: Pin may be driven or left floating.  
6
3UHOLPLQDU\  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
2.2  
Block Organization  
The 3 Volt Advanced+ Boot Block is an asymmetrically-blocked architecture that enables system  
integration of code and data within a single flash device. Each block can be erased independently  
of the others up to 100,000 times. For the address locations of each block, see the memory maps in  
Appendix E.  
2.2.1  
2.2.2  
Parameter Blocks  
The 3 Volt Advanced+ Boot Block flash memory architecture includes parameter blocks to  
facilitate storage of frequently updated small parameters (i.e., data that would normally be stored in  
an EEPROM). Each device contains eight parameter blocks of 4 Kwords (4,096 words).  
Main Blocks  
After the parameter blocks, the remainder of the array is divided into 32-Kword (32,768 words)  
main blocks for data or code storage. Each 8-Mbit, 16-Mbit, 32-Mbit, or 64-Mbit device contains  
15, 31, 63, or 127 main blocks, respectively.  
3.0  
Principles of Operation  
The 3 Volt Advanced+ Boot Block flash memory family utilizes a CUI and automated algorithms  
to simplify program and erase operations. The CUI allows for 100% CMOS-level control inputs  
and fixed power supplies during erasure and programming.  
The internal WSM completely automates program and erase operations while the CUI signals the  
start of an operation and the status register reports status. The CUI handles the WE# interface to the  
data and address latches, as well as system status requests during WSM operation.  
3.1  
Bus Operation  
The 3 Volt Advanced+ Boot Block flash memory devices read, program and erase in-system via  
the local CPU or microcontroller. All bus cycles to or from the flash memory conform to standard  
microcontroller bus cycles. Four control pins dictate the data flow in and out of the flash  
component: CE#, OE#, WE# and RP#. These bus operations are summarized in Table 3 on page 8.  
3.1.1  
Read  
The flash memory has four read modes available: read array, read configuration, read status and  
read query. These modes are accessible independent of the VPP voltage. The appropriate read mode  
command must be issued to the CUI to enter the corresponding mode. Upon initial device power-  
up or after exit from reset, the device automatically defaults to read array mode.  
CE# and OE# must be driven active to obtain data at the outputs. CE# is the device selection  
control; when active it enables the flash memory device. OE# is the data output control and it  
drives the selected memory data onto the I/O bus. For all read modes, WE# and RP# must be at  
VIH. Figure 8, “AC Waveform: Read Operations” on page 32 illustrates a read cycle.  
3UHOLPLQDU\  
7
28F800C3, 28F160C3, 28F320C3, 28F640C3  
3.1.2  
3.1.3  
Output Disable  
With OE# at a logic-high level (VIH), the device outputs are disabled. Output pins are placed in a  
high-impedance state.  
Standby  
Deselecting the device by bringing CE# to a logic-high level (VIH) places the device in standby  
mode, which substantially reduces device power consumption without any latency for subsequent  
read accesses. In standby, outputs are placed in a high-impedance state independent of OE#. If  
deselected during program or erase operation, the device continues to consume active power until  
the program or erase operation is complete.  
Table 3. Bus Operations  
Mode  
Notes  
RP#  
CE#  
OE#  
WE#  
DQ  
DQ  
0–7  
8–15  
Read (Array, Status, Configuration, or Query)  
1, 2,3  
1
V
V
V
V
V
V
V
V
D
D
IH  
IH  
IH  
IL  
IL  
IH  
IL  
IH  
IH  
OUT  
OUT  
Output Disable  
Standby  
Reset  
V
High Z  
High Z  
High Z  
High Z  
High Z  
High Z  
IH  
1
V
X
X
1,4  
V
X
X
X
IL  
Write  
1,4,5,6  
V
V
V
V
D
D
IN  
IH  
IL  
IH  
IL  
IN  
NOTES:  
1. X must be VIL, VIH for control pins and addresses.  
2. See DC Characteristics for VPPLK, VPP1, VPP2, VPP3, voltages.  
3. Manufacturer and device codes may also be accessed in read configuration mode (A1–A20 = 0). See Table 4  
on page 10.  
4. To program or erase the lockable blocks, hold WP# at VIH.  
5. Refer to Table 5 on page 13 for valid DIN during a write operation.  
6. RP# must be at GND ± 0.2 V to meet the maximum deep power-down current specified.  
8-bit devices use only DQ [0:7], 16-bit devices use DQ [0:15].  
3.1.4  
Reset  
From read mode, RP# at VIL for time tPLPH deselects the memory, places output drivers in a high-  
impedance state, and turns off all internal circuits. After return from reset, a time tPHQV is required  
until the initial read access outputs are valid. A delay (tPHWL or tPHEL) is required after return from  
reset before a write can be initiated. After this wake-up interval, normal operation is restored. The  
CUI resets to read array mode, the status register is set to 80H, and all blocks are locked. This case  
is shown in Figure 10, “AC Waveform: Reset Operations” on page 39 (section A).  
If RP# is taken low for time tPLPH during a program or erase operation, the operation will be  
aborted and the memory contents at the aborted location (for a program) or block (for an erase) are  
no longer valid, since the data may be partially erased or written. The abort process goes through  
the following sequence: When RP# goes low, the device shuts down the operation in progress, a  
process which takes time tPLRH to complete. After this time tPLRH, the part will either reset to read  
array mode (if RP# has gone high during tPLRH, Figure 10, section B) or enter reset mode (if RP# is  
still logic low after tPLRH, Figure 10, section C). In both cases, after returning from an aborted  
operation, the relevant time tPHQV or tPHWL/tPHEL must be observed before a read or write  
operation is initiated, as discussed in the previous paragraph. However, in this case, these delays  
are referenced to the end of tPLRH rather than when RP# goes high.  
8
3UHOLPLQDU\  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
Similar to any automated device, it is important to assert RP# during system reset. When the  
system comes out of reset, the processor expects to read from the flash memory. Automated flash  
memories provide status information when read during program or block erase operations. If a  
CPU reset occurs with no flash memory reset, proper CPU initialization may not occur because the  
flash memory may be providing status information instead of array data. Intel® Flash memories  
allow proper CPU initialization following a system reset through the use of the RP# input. In this  
application, RP# is controlled by the same RESET# signal that resets the system CPU.  
3.1.5  
Write  
A write takes place when both CE# and WE# are low and OE# is high. Commands are written to  
the Command User Interface (CUI) using standard microprocessor write timings to control flash  
operations. The CUI does not occupy an addressable memory location. The address and data buses  
are latched on the rising edge of the second WE# or CE# pulse, whichever occurs first. See Figure  
9, “AC Waveform: Program and Erase Operations” on page 38. The available commands are  
shown in Table 6 on page 14, and Appendix A provides detailed information on moving between  
the different modes of operation using CUI commands.  
There are two commands that modify array data: Program (40H) and Erase (20H). Writing either of  
these commands to the internal Command User Interface (CUI) initiates a sequence of internally-  
timed functions that culminate in the completion of the requested task (unless that operation is  
aborted by either RP# being driven to VIL for tPLRH or an appropriate suspend command).  
3.2  
Modes of Operation  
The flash memory has four read modes and two write modes. The read modes are read array, read  
configuration, read status, and read query. The write modes are program and erase. Three  
additional modes (erase suspend to program, erase suspend to read and program suspend to read)  
are available only during suspended operations. These modes are reached using the commands  
summarized in Tables 5 and 6. For a comprehensive chart showing the state transitions, see  
Appendix A.  
3.2.1  
Read Array  
When RP# transitions from VIL (reset) to VIH, the device defaults to read array mode and will  
respond to the read control inputs (CE#, address inputs, and OE#) without any additional CUI  
commands.  
When the device is in read array mode, four control signals control data output:  
WE# must be logic high (VIH)  
CE# must be logic low (VIL)  
OE# must be logic low (VIL)  
RP# must be logic high (VIH)  
In addition, the address of the desired location must be applied to the address pins. If the device is  
not in read array mode, as would be the case after a program or erase operation, the Read Array  
command (FFH) must be written to the CUI before array reads can take place.  
3UHOLPLQDU\  
9
28F800C3, 28F160C3, 28F320C3, 28F640C3  
3.2.2  
Read Configuration  
The Read Configuration mode outputs three types of information: the manufacturer/device  
identifier, the block locking status, and the protection register. The device is switched to this mode  
by writing the Read Configuration command (90H). Once in this mode, read cycles from addresses  
shown in Table 4 retrieve the specified information. To return to read array mode, write the Read  
Array command (FFH).  
Table 4. Read Configuration Table  
Item  
Address  
Data  
Manufacturer Code (x16)  
Device ID (See Appendix F)  
Block Lock Configuration(1)  
Block Is Unlocked  
00000  
00001  
0089  
ID  
XX002(2)  
LOCK  
DQ = 0  
0
Block Is Locked  
DQ = 1  
0
Block Is Locked-Down  
Protection Register Lock(3)  
Protection Register (x16)  
DQ = 1  
1
80  
PR-LK  
81–88  
PR  
NOTES:  
1. See Section 3.3.4 for valid lock status outputs.  
2. “XX” specifies the block address of lock configuration being read.  
3. See Section 3.4 for protection register information.  
4. Other locations within the configuration address space are reserved by Intel for future use.  
3.2.3  
Read Status Register  
The status register indicates the status of device operations, and the success/failure of that  
operation. The Read Status Register (70H) command causes subsequent reads to output data from  
the status register until another command is issued. To return to reading from the array, issue a  
Read Array (FFH) command.  
The status register bits are output on DQ0–DQ7. The upper byte, DQ8–DQ15, outputs 00H during a  
Read Status Register command.  
The contents of the status register are latched on the falling edge of OE# or CE#, whichever occurs  
last. This prevents possible bus errors which might occur if status register contents change while  
being read. CE# or OE# must be toggled with each subsequent status read, or the status register  
will not indicate completion of a program or erase operation.  
When the WSM is active, SR.7 will indicate the status of the WSM; the remaining bits in the status  
register indicate whether the WSM was successful in performing the desired operation (see  
Table 7, “Status Register Bit Definition” on page 15).  
3.2.3.1  
Clearing the Status Register  
The WSM sets status bits 1 through 7 to “1,” and clears bits 2, 6 and 7 to “0,” but cannot clear  
status bits 1 or 3 through 5 to “0.” Because bits 1, 3, 4 and 5 indicate various error conditions, these  
bits can only be cleared through the use of the Clear Status Register (50H) command. By allowing  
the system software to control the resetting of these bits, several operations may be performed  
(such as cumulatively programming several addresses or erasing multiple blocks in sequence)  
10  
3UHOLPLQDU\  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
before reading the status register to determine if an error occurred during that series. Clear the  
status register before beginning another command or sequence. Note that this is different from a  
burst device. The Read Array command must be issued before data can be read from the memory  
array. Resetting the device also clears the status register.  
3.2.4  
3.2.5  
Read Query  
The read query mode outputs Common Flash Interface (CFI) data when the device is read. This can  
be accessed by writing the Read Query Command (98H). The CFI data structure contains  
information such as block size, density, command set and electrical specifications. Once in this  
mode, read cycles from addresses shown in Appendix C retrieve the specified information. To  
return to read array mode, write the Read Array command (FFH).  
Program Mode  
Programming is executed using a two-write sequence. The Program Setup command (40H) is  
written to the CUI followed by a second write which specifies the address and data to be  
programmed. The WSM will execute a sequence of internally timed events to program desired bits  
of the addressed location, then verify the bits are sufficiently programmed. Programming the  
memory results in specific bits within an address location being changed to a “0.” If the user  
attempts to program “1”s, the memory cell contents do not change and no error occurs.  
The status register indicates programming status: while the program sequence executes, status bit 7  
is “0.” The status register can be polled by toggling either CE# or OE#. While programming, the  
only valid commands are Read Status Register, Program Suspend, and Program Resume.  
When programming is complete, the program status bits should be checked. If the programming  
operation was unsuccessful, bit SR.4 of the status register is set to indicate a program failure. If  
SR.3 is set then VPP was not within acceptable limits, and the WSM did not execute the program  
command. If SR.1 is set, a program operation was attempted on a locked block and the operation  
was aborted.  
The status register should be cleared before attempting the next operation. Any CUI instruction can  
follow after programming is completed; however, to prevent inadvertent status register reads, be  
sure to reset the CUI to read array mode.  
3.2.5.1  
Suspending and Resuming Program  
The Program Suspend command halts an in-progress program operation so that data can be read  
from other locations of memory. Once the programming process starts, writing the Program  
Suspend command to the CUI requests that the WSM suspend the program sequence (at  
predetermined points in the program algorithm). The device continues to output status register data  
after the Program Suspend command is written. Polling status register bits SR.7 and SR.2 will  
determine when the program operation has been suspended (both will be set to “1”). tWHRH1  
/
tEHRH1 specify the program suspend latency.  
A Read Array command can now be written to the CUI to read data from blocks other than that  
which is suspended. The only other valid commands while program is suspended are Read Status  
Register, Read Configuration, Read Query, and Program Resume. After the Program Resume  
command is written to the flash memory, the WSM will continue with the programming process  
and status register bits SR.2 and SR.7 will automatically be cleared. The device automatically  
outputs status register data when read (see Figure 12, “Program Suspend/Resume Flowchart” on  
page 45) after the Program Resume command is written. VPP must remain at the same VPP level  
used for program while in program suspend mode. RP# must also remain at VIH.  
3UHOLPLQDU\  
11  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
3.2.6  
Erase Mode  
To erase a block, write the Erase Set-up and Erase Confirm commands to the CUI, along with an  
address identifying the block to be erased. This address is latched internally when the Erase  
Confirm command is issued. Block erasure results in all bits within the block being set to “1.” Only  
one block can be erased at a time. The WSM will execute a sequence of internally timed events to  
program all bits within the block to “0,” erase all bits within the block to “1,” then verify that all  
bits within the block are sufficiently erased. While the erase executes, status bit 7 is a “0.”  
When the status register indicates that erasure is complete, check the erase status bit to verify that  
the erase operation was successful. If the Erase operation was unsuccessful, SR.5 of the status  
register will be set to a “1,” indicating an erase failure. If VPP was not within acceptable limits after  
the Erase Confirm command was issued, the WSM will not execute the erase sequence; instead,  
SR.5 of the status register is set to indicate an erase error, and SR.3 is set to a “1” to identify that  
V
PP supply voltage was not within acceptable limits.  
After an erase operation, clear the status register (50H) before attempting the next operation. Any  
CUI instruction can follow after erasure is completed; however, to prevent inadvertent status  
register reads, it is advisable to place the flash in read array mode after the erase is complete.  
3.2.6.1  
Suspending and Resuming Erase  
Since an erase operation requires on the order of seconds to complete, an Erase Suspend command  
is provided to allow erase-sequence interruption in order to read data from or program data to  
another block in memory. Once the erase sequence is started, writing the Erase Suspend command  
to the CUI suspends the erase sequence at a predetermined point in the erase algorithm. The status  
register will indicate if/when the erase operation has been suspended. Erase suspend latency is  
specified by tWHRH2/tEHRH2  
.
A Read Array/Program command can now be written to the CUI to read/program data from/to  
blocks other than that which is suspended. This nested Program command can subsequently be  
suspended to read yet another location. The only valid commands while erase is suspended are  
Read Status Register, Read Configuration, Read Query, Program Setup, Program Resume, Erase  
Resume, Lock Block, Unlock Block and Lock-Down Block. During erase suspend mode, the chip  
can be placed in a pseudo-standby mode by taking CE# to VIH. This reduces active current  
consumption.  
Erase Resume continues the erase sequence when CE# = VIL. Similar to the end of a standard erase  
operation, the status register must be read and cleared before the next instruction is issued.  
12  
3UHOLPLQDU\  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
Table 5. Command Bus Operations  
First Bus Cycle  
Second Bus Cycle  
Command  
Notes  
Oper  
Addr  
Data  
Oper  
Addr  
Data  
Read Array  
1
1, 2  
1, 2  
1
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
Write  
X
X
X
X
X
X
X
X
X
X
X
X
X
FFH  
90H  
Read Configuration  
Read Query  
Read  
Read  
Read  
IA  
QA  
X
ID  
98H  
QD  
Read Status Register  
Clear Status Register  
Program  
70H  
SRD  
1
50H  
1, 3  
1
40H/10H  
20H  
Write  
Write  
PA  
BA  
PD  
Block Erase/Confirm  
Program/Erase Suspend  
Program/Erase Resume  
Lock Block  
D0H  
1
B0H  
D0H  
60H  
1
1
Write  
Write  
Write  
Write  
BA  
BA  
BA  
PA  
01H  
D0H  
2FH  
PD  
Unlock Block  
1
60H  
Lock-Down Block  
Protection Program  
1
60H  
1
C0H  
X = Don’t Care  
PA = Prog Addr  
PD = Prog Data  
BA = Block Addr  
IA = Identifier Addr. QA = Query Addr.  
ID = Identifier Data QD = Query Data  
SRD = Status Reg.  
Data  
NOTES:  
1. Following the Read Configuration or Read Query commands, read operations output device configuration or  
CFI query information, respectively. See Section 3.2.2 and Section 3.2.4.  
2. Either 40H or 10H command is valid, but the Intel standard is 40H.  
3. When writing commands, the upper data bus [DQ8–DQ15] should be either VIL or VIH, to minimize current  
draw.  
Bus operations are defined in Table 3, “Bus Operations” on page 8.  
3UHOLPLQDU\  
13  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
Table 6. Command Codes and Descriptions  
Code  
Device Mode  
Description  
FF  
Read Array  
This command places the device in read array mode which outputs array data on the data pins.  
This is a two-cycle command. The first cycle prepares the CUI for a program operation. The  
second cycle latches addresses and data information and initiates the WSM to execute the  
Program algorithm. The flash outputs status register data when CE# or OE# is toggled. A Read  
Array command is required after programming to read array data. See Section 3.2.5.  
40  
20  
Program Set-Up  
Prepares the CUI for the Erase Confirm command. If the next command is not an Erase  
Confirm command, then the CUI will (a) set both SR.4 and SR.5 of the status register to a “1,”  
(b) place the device into the read status register mode, and (c) wait for another command. See  
Section 3.2.6.  
Erase Set-Up  
If the previous command was an Erase Set-Up command, then the CUI will close the address  
and data latches and begin erasing the block indicated on the address pins. During program/  
erase, the device will respond only to the Read Status Register, Program Suspend and Erase  
Suspend commands and will output status register data when CE# or OE# is toggled.  
Erase Confirm  
D0  
Program/Erase  
Resume  
If a program or erase operation was previously suspended, this command will resume that  
operation.  
If the previous command was Configuration Set-Up, the CUI will latch the address and unlock  
the block indicated on the address pins. If the block had been previously set to Lock-Down, this  
operation will have no effect. (Section 3.3)  
Unlock Block  
Issuing this command will begin to suspend the currently executing program/erase operation.  
The status register will indicate when the operation has been successfully suspended by  
setting either the program suspend (SR.2) or erase suspend (SR.6) and the WSM status bit  
(SR.7) to a “1” (ready). The WSM will continue to idle in the SUSPEND state, regardless of the  
state of all input control pins except RP#, which will immediately shut down the WSM and the  
Program  
Suspend  
B0  
70  
Erase  
Suspend  
remainder of the chip if RP# is driven to V . See Sections 3.2.5.1 and 3.2.6.1.  
IL  
This command places the device into read status register mode. Reading the device will output  
the contents of the status register, regardless of the address presented to the device. The  
device automatically enters this mode after a program or erase operation has been initiated.  
See Section 3.2.3.  
Read Status  
Register  
The WSM can set the block lock status (SR.1) , V Status (SR.3), program status (SR.4), and  
erase status (SR.5) bits in the status register to “1,” but it cannot clear them to “0.” Issuing this  
command clears those bits to “0.”  
PP  
Clear Status  
Register  
50  
90  
Read  
Configuration  
Puts the device into the read configuration mode so that reading the device will output the  
manufacturer/device codes or block lock status. Section 3.2.2.  
Prepares the CUI for changes to the device configuration, such as block locking changes. If the  
next command is not Block Unlock, Block Lock, or Block Lock-Down, then the CUI will set both  
the program and erase status register bits to indicate a command sequence error. See Section  
3.2.  
Configuration  
Set-Up  
60  
If the previous command was Configuration Set-Up, the CUI will latch the address and lock the  
block indicated on the address pins. (Section 3.3)  
01  
2F  
98  
Lock-Block  
Lock-Down  
If the previous command was a Configuration Set-Up command, the CUI will latch the address  
and lock-down the block indicated on the address pins. (Section 3.3)  
Read  
Query  
Puts the device into the read query mode so that reading the device will output Common Flash  
Interface information. See Section 3.2.4 and Appendix C.  
This is a two-cycle command. The first cycle prepares the CUI for a program operation to the  
protection register. The second cycle latches addresses and data information and initiates the  
WSM to execute the Protection Program algorithm to the protection register. The flash outputs  
status register data when CE# or OE# is toggled. A Read Array command is required after  
programming to read array data. See Section 3.4.  
Protection  
Program  
Setup  
C0  
10  
00  
Alt. Prog Set-Up  
Operates the same as Program Set-up command. (See 40H/Program Set-Up)  
Invalid/  
Reserved  
Unassigned commands that should not be used. Intel reserves the right to redefine these  
codes for future functions.  
NOTE: See Appendix A for mode transition information.  
14  
3UHOLPLQDU\  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
Table 7. Status Register Bit Definition  
WSMS  
7
ESS  
6
ES  
5
PS  
4
VPPS  
3
PSS  
2
BLS  
1
R
0
NOTES:  
SR.7 WRITE STATE MACHINE STATUS (WSMS)  
1 = Ready  
0 = Busy  
Check Write State Machine bit first to determine Word Program  
or Block Erase completion, before checking Program or Erase  
Status bits.  
SR.6 = ERASE-SUSPEND STATUS (ESS)  
1 = Erase Suspended  
0 = Erase In Progress/Completed  
When Erase Suspend is issued, WSM halts execution and sets  
both WSMS and ESS bits to “1.” ESS bit remains set to “1” until  
an Erase Resume command is issued.  
SR.5 = ERASE STATUS (ES)  
1 = Error In Block Erase  
0 = Successful Block Erase  
When this bit is set to “1,” WSM has applied the max. number  
of erase pulses to the block and is still unable to verify  
successful block erasure.  
SR.4 = PROGRAM STATUS (PS)  
1 = Error in Programming  
0 = Successful Programming  
When this bit is set to “1,” WSM has attempted but failed to  
program a word/byte.  
The V status bit does not provide continuous indication of  
PP  
V
level. The WSM interrogates V level only after the  
PP  
PP  
SR.3 = V STATUS (VPPS)  
Program or Erase command sequences have been entered,  
and informs the system if V has not been switched on. The  
PP  
1 = V Low Detect, Operation Abort  
PP  
PP  
0 = V OK  
V
is also checked before the operation is verified by the  
PP  
PP  
WSM. The V status bit is not guaranteed to report accurate  
PP  
feedback between V  
and V  
Min.  
PPLK  
PP1  
SR.2 = PROGRAM SUSPEND STATUS (PSS)  
1 = Program Suspended  
0 = Program in Progress/Completed  
When Program Suspend is issued, WSM halts execution and  
sets both WSMS and PSS bits to “1.” PSS bit remains set to “1”  
until a Program Resume command is issued.  
SR.1 = BLOCK LOCK STATUS  
1 = Prog/Erase attempted on a locked  
block; Operation aborted.  
If a program or erase operation is attempted to one of the  
locked blocks, this bit is set by the WSM. The operation  
specified is aborted and the device is returned to read status  
mode.  
0 = No operation to locked blocks  
This bit is reserved for future use and should be masked out  
when polling the status register.  
SR.0 = RESERVED FOR FUTURE ENHANCEMENTS (R)  
NOTE: A Command Sequence Error is indicated when both SR.4, SR.5 and SR.7 are set.  
3.3  
Flexible Block Locking  
Intel 3 Volt Advanced+ Boot Block products offer an instant, individual block locking scheme that  
allows any block to be locked or unlocked with no latency, enabling instant code and data  
protection.  
This locking scheme offers two levels of protection. The first level allows software-only control of  
block locking (useful for data blocks that change frequently), while the second level requires  
hardware interaction before locking can be changed (useful for code blocks that change  
infrequently).  
The following sections will discuss the operation of the locking system. The term “state [XYZ]”  
will be used to specify locking states; e.g., “state [001],” where X = value of WP#, Y = bit DQ1 of  
the Block Lock status register, and Z = bit DQ0 of the Block Lock status register. Table 9, “Block  
Locking State Transitions” on page 18 defines all of these possible locking states.  
3UHOLPLQDU\  
15  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
3.3.1  
Locking Operation  
The following concisely summarizes the locking functionality.  
All blocks power-up locked, then can be unlocked or locked with the Unlock and Lock  
commands.  
The Lock-Down command locks a block and prevents it from being unlocked when WP# = 0.  
— When WP# = 1, Lock-Down is overridden and commands can unlock/lock locked-down  
blocks.  
— When WP# returns to 0, locked-down blocks return to Lock-Down.  
— Lock-Down is cleared only when the device is reset or powered-down.  
The locking status of each block can be set to Locked, Unlocked, and Lock-Down, each of which  
will be described in the following sections. A comprehensive state table for the locking functions is  
shown in Table 9 on page 18, and a flowchart for locking operations is shown in Figure 15 on  
page 48.  
3.3.1.1  
Locked State  
The default status of all blocks upon power-up or reset is locked (states [001] or [101]). Locked  
blocks are fully protected from alteration. Any program or erase operations attempted on a locked  
block will return an error on bit SR.1 of the status register. The status of a locked block can be  
changed to Unlocked or Lock-Down using the appropriate software commands. An Unlocked  
block can be locked by writing the Lock command sequence, 60H followed by 01H.  
3.3.2  
3.3.3  
Unlocked State  
Unlocked blocks (states [000], [100], [110]) can be programmed or erased. All unlocked blocks  
return to the Locked state when the device is reset or powered down. The status of an unlocked  
block can be changed to Locked or Locked-Down using the appropriate software commands. A  
Locked block can be unlocked by writing the Unlock command sequence, 60H followed by D0H.  
Lock-Down State  
Blocks that are Locked-Down (state [011]) are protected from program and erase operations (just  
like Locked blocks), but their protection status cannot be changed using software commands alone.  
A Locked or Unlocked block can be Locked-down by writing the Lock-Down command sequence,  
60H followed by 2FH. Locked-Down blocks revert to the Locked state when the device is reset or  
powered down.  
The Lock-Down function is dependent on the WP# input pin. When WP# = 0, blocks in Lock-  
Down [011] are protected from program, erase, and lock status changes. When WP# = 1, the Lock-  
Down function is disabled ([111]) and locked-down blocks can be individually unlocked by  
software command to the [110] state, where they can be erased and programmed. These blocks can  
then be relocked [111] and unlocked [110] as desired while WP# remains high. When WP# goes  
low, blocks that were previously locked-down return to the Lock-Down state [011] regardless of  
any changes made while WP# was high. Device reset or power-down resets all blocks, including  
those in Lock-Down, to Locked state.  
16  
3UHOLPLQDU\  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
3.3.4  
Reading a Block’s Lock Status  
The lock status of every block can be read in the configuration read mode of the device. To enter  
this mode, write 90H to the device. Subsequent reads at Block Address + 00002 will output the  
lock status of that block. The lock status is represented by DQ0 and DQ1. DQ0 indicates the Block  
Lock/Unlock status and is set by the Lock command and cleared by the Unlock command. It is also  
automatically set when entering Lock-Down. DQ1 indicates Lock-Down status and is set by the  
Lock-Down command. It cannot be cleared by software, only by device reset or power-down.  
Table 8. Block Lock Status  
Item  
Address  
Data  
Block Lock Configuration  
Block Is Unlocked  
Block Is Locked  
XX002  
LOCK  
DQ = 0  
0
DQ = 1  
0
Block Is Locked-Down  
DQ = 1  
1
3.3.5  
Locking Operations during Erase Suspend  
Changes to block lock status can be performed during an erase suspend by using the standard  
locking command sequences to unlock, lock, or lock-down a block. This is useful in the case when  
another block needs to be updated while an erase operation is in progress.  
To change block locking during an erase operation, first write the erase suspend command (B0H),  
then check the status register until it indicates that the erase operation has been suspended. Next  
write the desired lock command sequence to a block and the lock status will be changed. After  
completing any desired lock, read, or program operations, resume the erase operation with the  
Erase Resume command (D0H).  
If a block is locked or locked-down during a suspended erase of the same block, the locking status  
bits will be changed immediately, but when the erase is resumed, the erase operation will complete.  
Locking operations cannot be performed during a program suspend. Refer to Appendix A for  
detailed information on which commands are valid during erase suspend.  
3.3.6  
Status Register Error Checking  
Using nested locking or program command sequences during erase suspend can introduce  
ambiguity into status register results.  
Since locking changes are performed using a two cycle command sequence, e.g., 60H followed by  
01H to lock a block, following the Configuration Setup command (60H) with an invalid command  
will produce a lock command error (SR.4 and SR.5 will be set to 1) in the status register. If a lock  
command error occurs during an erase suspend, SR.4 and SR.5 will be set to 1 and will remain at 1  
after the erase is resumed. When erase is complete, any possible error during the erase cannot be  
detected via the status register because of the previous locking command error.  
A similar situation happens if an error occurs during a program operation error nested within an  
erase suspend.  
3UHOLPLQDU\  
17  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
Table 9. Block Locking State Transitions  
Current State  
Lock Command Input Result (Next State)  
Erase/Prog  
Allowed?  
X
Y
Z
Lock  
Unlock  
Lock-Down  
WP#  
DQ  
DQ  
Name  
1
0
0
0
0
1
1
1
1
0
0
1
0
0
1
1
0
1
1
0
1
0
1
“Unlocked”  
“Locked” (Default)  
“Locked-Down”  
“Unlocked”  
Yes  
No  
Goes To [001]  
No Change  
No Change  
Goes To [101]  
No Change  
Goes To [111]  
No Change  
No Change  
Goes To [000]  
No Change  
Goes To [011]  
Goes To [011]  
No Change  
No  
Yes  
No  
No Change  
Goes To [111]  
Goes To [111]  
Goes To [111]  
No Change  
“Locked”  
Goes To [100]  
No Change  
Lock-Down Disabled  
Lock-Down Disabled  
Yes  
No  
Goes To [110]  
NOTES:  
1. In this table, the notation [XYZ] denotes the locking state of a block, where X = WP#, Y = DQ1, and Z = DQ0.  
The current locking state of a block is defined by the state of WP# and the two bits of the block lock status  
(DQ0, DQ1). DQ0 indicates if a block is locked (1) or unlocked (0). DQ1 indicates if a block has been locked-  
down (1) or not (0).  
2. At power-up or device reset, all blocks default to Locked state [001] (if WP# = 0). Holding WP# = 0 is the  
recommended default.  
3. The “Erase/Program Allowed?” column shows whether erase and program operations are enabled (Yes) or  
disabled (No) in that block’s current locking state.  
4. The “Lock Command Input Result [Next State]” column shows the result of writing the three locking  
commands (Lock, Unlock, Lock-Down) in the current locking state. For example, “Goes To [001]” would mean  
that writing the command to a block in the current locking state would change it to [001].  
3.4  
128-Bit Protection Register  
The 3 Volt Advanced+ Boot Block architecture includes a 128-bit protection register than can be  
used to increase the security of a system design. For example, the number contained in the  
protection register can be used to “mate” the flash component with other system components such  
as the CPU or ASIC, preventing device substitution. Additional application information can be  
found in Intel application note AP-657 Designing with the Advanced+ Boot Block Flash Memory  
Architecture.  
The 128-bits of the protection register are divided into two 64-bit segments. One of the segments is  
programmed at the Intel factory with a unique 64-bit number, which is unchangeable. The other  
segment is left blank for customer designs to program as desired. Once the customer segment is  
programmed, it can be locked to prevent reprogramming.  
3.4.1  
Reading the Protection Register  
The protection register is read in the configuration read mode. The device is switched to this mode  
by writing the Read Configuration command (90H). Once in this mode, read cycles from addresses  
shown in Appendix G retrieve the specified information. To return to read array mode, write the  
Read Array command (FFH).  
18  
3UHOLPLQDU\  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
3.4.2  
Programming the Protection Register  
The protection register bits are programmed using the two-cycle Protection Program command.  
The 64-bit number is programmed 16 bits at a time for word-wide parts and eight bits at a time for  
byte-wide parts. First write the Protection Program Setup command, C0H. The next write to the  
device will latch in address and data and program the specified location. The allowable addresses  
are shown in Appendix G. See Figure 16, “Protection Register Programming Flowchart” on  
page 49. Attempts to address Protection Program commands outside the defined protection register  
address space should not be attempted. This space is reserved for future use. Attempting to  
program to a previously locked protection register segment will result in a status register error  
(program error bit SR.4 and lock error bit SR.1 will be set to 1).  
3.4.3  
Locking the Protection Register  
The user-programmable segment of the protection register is lockable by programming Bit 1 of the  
PR-LOCK location to 0. Bit 0 of this location is programmed to 0 at the Intel factory to protect the  
unique device number. This bit is set using the Protection Program command to program “FFFD”  
to the PR-LOCK location. After these bits have been programmed, no further changes can be made  
to the values stored in the protection register. Protection Program commands to a locked section  
will result in a status register error (program error bit SR.4 and Lock Error bit SR.1 will be set to  
1). Protection register lockout state is not reversible.  
Figure 4. Protection Register Memory Map  
88H  
4 Words  
User Programmed  
85H  
84H  
4 Words  
Factory Programmed  
81H  
80H  
PR Lock  
0645_05  
3.5  
V
Program and Erase Voltages  
PP  
Intel 3 Volt Advanced+ Boot Block products provide in-system programming and erase in the  
1.65 V–3.6 V range. For fast production programming, it also includes a low-cost, backward-  
compatible 12 V programming feature.  
3.5.1  
Improved 12 Volt Production Programming  
When VPP is between 1.65 V and 3.6 V, all program and erase current is drawn through the VCC  
pin. Note that if VPP is driven by a logic signal, VIH min = 1.65 V. That is, VPP must remain above  
1.65 V to perform in-system flash modifications. When VPP is connected to a 12 V power supply,  
the device draws program and erase current directly from the VPP pin. This eliminates the need for  
an external switching transistor to control the voltage VPP. Figure 5 on page 20 shows examples of  
how the flash power supplies can be configured for various usage models.  
3UHOLPLQDU\  
19  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
The 12 V VPP mode enhances programming performance during the short period of time typically  
found in manufacturing processes; however, it is not intended for extended use. 12 V may be  
applied to VPP during program and erase operations for a maximum of 1000 cycles on the main  
blocks and 2500 cycles on the parameter blocks. VPP may be connected to 12 V for a total of 80  
hours maximum. Stressing the device beyond these limits may cause permanent damage.  
3.5.2  
V
V  
for Complete Protection  
PP  
PPLK  
In addition to the flexible block locking, the VPP programming voltage can be held low for absolute  
hardware write protection of all blocks in the flash device. When VPP is below VPPLK, any  
program or erase operation will result in a error, prompting the corresponding status register bit  
(SR.3) to be set.  
Figure 5. Example Power Supply Configurations  
System Supply  
System Supply  
VCC  
VPP  
VCC  
12 V Supply  
VPP  
Prot#  
(Logic Signal)  
10  
KΩ  
12 V Fast Programming  
Low-Voltage Programming  
Absolute Write Protection With V PP  
VPPLK  
Absolute Write Protection via Logic Signal  
System Supply  
(Note 1)  
System Supply  
VCC  
VCC  
VPP  
VPP  
12 V Supply  
Low Voltage and 12 V Fast Programming  
Low-Voltage Programming  
0645_06  
NOTE:  
1. A resistor can be used if the V supply can sink adequate current based on resistor value. See AP-657  
CC  
Designing with the Advanced+ Boot Block Flash Memory Architecture for details.  
3.6  
Power Consumption  
Intel Flash devices have a tiered approach to power savings that can significantly reduce overall  
system power consumption. The Automatic Power Savings (APS) feature reduces power  
consumption when the device is selected but idle. If the CE# is deasserted, the flash enters its  
standby mode, where current consumption is even lower. The combination of these features can  
minimize memory power consumption, and therefore, overall system power consumption.  
3.6.1  
Active Power (Program/Erase/Read)  
With CE# at a logic-low level and RP# at a logic-high level, the device is in the active mode. Refer  
to the DC Characteristic tables for ICC current values. Active power is the largest contributor to  
overall system power consumption. Minimizing the active current could have a profound effect on  
system power consumption, especially for battery-operated devices.  
20  
3UHOLPLQDU\  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
3.6.2  
3.6.3  
Automatic Power Savings (APS)  
Automatic Power Savings provides low-power operation during read mode. After data is read from  
the memory array and the address lines are quiescent, APS circuitry places the device in a mode  
where typical current is comparable to ICCS. The flash stays in this static state with outputs valid  
until a new location is read.  
Standby Power  
When CE# is at a logic-high level (VIH) and the device is in read mode, the flash memory is in  
standby mode, which disables much of the device’s circuitry and substantially reduces power  
consumption. Outputs are placed in a high-impedance state independent of the status of the OE#  
signal. If CE# transitions to a logic-high level during erase or program operations, the device will  
continue to perform the operation and consume corresponding active power until the operation is  
completed.  
System engineers should analyze the breakdown of standby time versus active time and quantify  
the respective power consumption in each mode for their specific application. This will provide a  
more accurate measure of application-specific power and energy requirements.  
3.6.4  
Deep Power-Down Mode  
The deep power-down mode is activated when RP# = VIL (GND ± 0.2 V). During read modes,  
RP# going low de-selects the memory and places the outputs in a high impedance state. Recovery  
from deep power-down requires a minimum time of tPHQV for read operations and tPHWL/tPHEL for  
write operations.  
During program or erase modes, RP# transitioning low will abort the in-progress operation. The  
memory contents of the address being programmed or the block being erased are no longer valid as  
the data integrity has been compromised by the abort. During deep power-down, all internal  
circuits are switched to a low power savings mode (RP# transitioning to VIL or turning off power to  
the device clears the status register).  
3.7  
Power-Up/Down Operation  
The device is protected against accidental block erasure or programming during power transitions.  
Power supply sequencing is not required, since the device is indifferent as to which power supply,  
V
PP or VCC, powers-up first.  
3.7.1  
RP# Connected to System Reset  
The use of RP# during system reset is important with automated program/erase devices since the  
system expects to read from the flash memory when it comes out of reset. If a CPU reset occurs  
without a flash memory reset, proper CPU initialization will not occur because the flash memory  
may be providing status information instead of array data. Intel recommends connecting RP# to the  
system CPU RESET# signal to allow proper CPU/flash initialization following system reset.  
System designers must guard against spurious writes when VCC voltages are above VLKO. Since  
both WE# and CE# must be low for a command write, driving either signal to VIH will inhibit  
writes to the device. The CUI architecture provides additional protection since alteration of  
memory contents can only occur after successful completion of the two-step command sequences.  
The device is also disabled until RP# is brought to VIH, regardless of the state of its control inputs.  
3UHOLPLQDU\  
21  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
By holding the device in reset (RP# connected to system PowerGood) during power-up/down,  
invalid bus conditions during power-up can be masked, providing yet another level of memory  
protection.  
3.7.2  
V
, V and RP# Transitions  
CC PP  
The CUI latches commands as issued by system software and is not altered by VPP or CE#  
transitions or WSM actions. Its default state upon power-up, after exit from reset mode or after  
V
CC transitions above VLKO (Lockout voltage), is read array mode.  
After any program or block erase operation is complete (even after VPP transitions down to  
V
PPLK), the CUI must be reset to read array mode via the Read Array command if access to the  
flash memory array is desired.  
3.8  
Power Supply Decoupling  
Flash memory’s power switching characteristics require careful device decoupling. System  
designers should consider three supply current issues:  
Standby current levels (ICCS  
Read current levels (ICCR  
)
)
Transient peaks produced by falling and rising edges of CE#.  
Transient current magnitudes depend on the device outputs’ capacitive and inductive loading. Two-  
line control and proper decoupling capacitor selection will suppress these transient voltage peaks.  
Each flash device should have a 0.1 µF ceramic capacitor connected between each VCC and GND,  
and between its VPP and GND. These high- frequency, inherently low-inductance capacitors should  
be placed as close as possible to the package leads.  
22  
3UHOLPLQDU\  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
4.0  
Electrical Specifications  
4.1  
Absolute Maximum Ratings  
Parameter  
Maximum Rating  
Extended Operating Temperature  
During Read  
–40 °C to +85 °C  
–40 °C to +85 °C  
–40 °C to +85 °C  
–65 °C to +125 °C  
During Block Erase and Program  
Temperature under Bias  
Storage Temperature  
Voltage On Any Pin (except V and V ) with Respect to GND  
–0.5 V to +3.7 V(1)  
Voltage (for Block Erase and Program) with Respect to GND –0.5 V to +13.5 V(1,2,3)  
CC  
PP  
V
V
PP  
CC  
and V  
Supply Voltage with Respect to GND  
–0.2 V to +3.6 V  
100 mA(4)  
CCQ  
Output Short Circuit Current  
NOTES:  
1. Minimum DC voltage is –0.5 V on input/output pins. During transitions, this level may undershoot to –2.0 V  
for periods <20 ns. Maximum DC voltage on input/output pins is V +0.5 V which, during transitions, may  
CC  
overshoot to V +2.0 V for periods <20 ns.  
CC  
2. Maximum DC voltage on V may overshoot to +14.0 V for periods <20 ns.  
PP  
3. V Program voltage is normally 1.65 V–3.6 V. Connection to a 11.4 V–12.6 V supply can be done for a  
PP  
maximum of 1000 cycles on the main blocks and 2500 cycles on the parameter blocks during program/erase.  
V
may be connected to 12 V for a total of 80 hours maximum. See Section 3.5 for details.  
PP  
4. Output shorted for no more than one second. No more than one output shorted at a time.  
NOTICE: This datasheet contains preliminary information on new products in production. Specifications are  
subject to change without notice. Verify with your local Intel Sales office that you have the latest datasheet before  
finalizing a design.  
Warning: Stressing the device beyond the “Absolute Maximum Ratings” may cause permanent damage.  
These are stress ratings only. Operation beyond the “Operating Conditions” is not recommended  
and extended exposure beyond the “Operating Conditions” may affect device reliability.  
3UHOLPLQDU\  
23  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
4.2  
Operating Conditions  
Table 10. Temperature and Voltage Operating Conditions  
Symbol  
Parameter  
Notes  
Min  
Max  
Units  
T
Operating Temperature  
–40  
2.7  
+85  
3.6  
°C  
A
V
V
V
V
V
V
Supply Voltage  
1, 2  
1, 2  
1
Volts  
CC1  
CC2  
CCQ1  
PP1  
CC  
3.0  
3.6  
I/O Supply Voltage  
Supply Voltage  
2.7  
3.6  
Volts  
Volts  
1
1.65  
11.4  
100,000  
3.6  
1, 3  
3
12.6  
Volts  
PP2  
Cycling  
Block Erase Cycling  
Cycles  
NOTES:  
1. V and V  
must share the same supply when they are in the V  
range.  
CC  
CCQ  
CC1  
2. V Max = 3.3 V for 0.25µm 32-Mbit devices.  
CC  
3. Applying V = 11.4 V–12.6 V during a program/erase can only be done for a maximum of 1000 cycles on  
PP  
the main blocks and 2500 cycles on the parameter blocks. V may be connected to 12 V for a total of  
PP  
80 hours maximum. See Section 3.5 for details.  
4.3  
Capacitance  
TA = 25 °C, f = 1 MHz  
Sym  
Parameter  
Notes  
Typ  
Max  
Units  
Conditions  
= 0 V  
C
C
Input Capacitance  
Output Capacitance  
1
1
6
8
pF  
pF  
V
IN  
IN  
OUT  
10  
12  
V
= 0 V  
OUT  
NOTE:  
1. Sampled, not 100% tested.  
24  
3UHOLPLQDU\  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
4.4  
DC Characteristics  
V
CC  
2.7 V—3.6 V(2)  
Sym  
Parameter  
V
Unit  
Test Conditions  
CCQ  
Notes  
Typ  
Max  
V
V
= V Max, V  
= V  
= V  
Max  
Max  
CC  
CC  
CCQ  
CCQ  
I
Input Load Current  
1,2  
± 1  
µA  
µA  
µA  
µA  
µA  
LI  
= V  
or GND  
CCQ  
IN  
V
V
= V Max, V  
CC CCQ  
CC  
CCQ  
I
Output Leakage Current  
Standby Current for 0.18  
1,2  
1
0.2  
7
± 10  
15  
LO  
= V  
or GND  
CCQ  
IN  
V
= V Max, CE# = RP# = V  
CC  
V
CC  
CCQ  
CCQ  
CC  
Micron Product  
WP# = V  
or GND  
CCQ  
I
CCS  
V
= V Max, CE# = RP# = V  
CC  
V
Standby Current for 0.25  
CC  
CC  
1
10  
7
25  
Micron and 0.4 Micron Product  
WP# = V  
or GND  
CCQ  
V
V
= V Max, V  
= V  
Max  
CCQ  
V
Deep Power-Down Current  
CC  
CC  
CCQ  
CC  
1,2  
15  
for 0.18 Micron Product  
= V  
or GND, RP# = GND ± 0.2 V  
CCQ  
IN  
I
I
CCD  
V
Deep Power-Down Current  
CC  
V
V
= V Max, V  
= V  
Max  
CCQ  
CC  
CC  
CCQ  
for 0.25 Micron and 0.4 Micron  
Product  
1,2  
7
9
25  
18  
µA  
= V  
or GND, RP# = GND ± 0.2 V  
CCQ  
IN  
V
= V Max, V  
= V  
Max  
CCQ  
CC  
CC  
CCQ  
V
V
Read Current  
1,2,3  
1,4  
mA  
OE# = V , CE# = V , f = 5 MHz,  
CCR  
CC  
CC  
IH  
IL  
I
= 0 mA, Inputs = V or V  
OUT  
IL IH  
18  
8
55  
15  
45  
15  
mA  
mA  
mA  
mA  
V
V
V
V
= V  
= V  
= V  
= V  
, Program in Progress  
PP  
PP  
PP  
PP  
PP1  
PP2  
PP1,  
PP2  
I
I
Program Current  
CCW  
(12 V), Program in Progress  
Erase in Progress  
16  
8
V
V
Erase Current  
1,4  
CCE  
CC  
CC  
(12 V), Erase in Progress  
Erase Suspend Current for  
1,4,5  
7
15  
25  
µA  
µA  
CE# = V , Erase Suspend in Progress  
IH  
0.18 Micron Product  
I
CCES  
V
Erase Suspend Current for  
CC  
0.25 Micron and 0.4 Micron  
Product  
1,4,5  
1,4,5  
1,4,5  
10  
CE# = V , Erase Suspend in Progress  
IH  
CE# = V , Program  
V
Program Suspend Current  
IH  
CC  
7
15  
25  
µA  
µA  
for 0.18 Micron Product  
Suspend in Progress  
I
CCWS  
V
Program Suspend Current  
CC  
CE# = V , Program  
IH  
for 0.25 Micron and 0.4 Micron  
Product  
10  
Suspend in Progress  
I
I
V
V
Deep Power-Down Current  
Standby Current  
1
1
0.2  
0.2  
2
5
µA  
µA  
RP# = GND ± 0.2 V, V V  
PP CC  
PPD  
PP  
PP  
5
V
V
V
V
V
V
V
V  
V  
V  
PPS  
PP  
PP  
PP  
PP  
PP  
PP  
PP  
CC  
CC  
1
±15  
200  
0.1  
22  
µA  
I
I
I
V
V
V
Read Current  
Program Current  
Erase Current  
PPR  
PPW  
PPE  
PP  
PP  
PP  
1,4  
50  
0.05  
8
µA  
CC  
mA  
mA  
mA  
mA  
=V  
, Program in Progress  
PP1  
1,4  
1,4  
= V  
= V  
= V  
(12 V), Program in Progress  
, Program in Progress  
PP2  
PP1  
PP2  
0.05  
8
0.1  
22  
(12 V), Program in Progress  
3UHOLPLQDU\  
25  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
V
CC  
2.7 V—3.6 V(2)  
Sym  
Parameter  
V
Unit  
Test Conditions  
CCQ  
Notes  
Typ  
Max  
0.2  
5
µA  
µA  
V
V
= V  
= V  
, Erase Suspend in Progress  
(12 V),  
PP  
PP1  
I
I
V
V
Erase Suspend Current  
1,4  
PPES  
PP  
PP  
PP2  
50  
0.2  
50  
200  
5
Erase Suspend in Progress  
V
= V  
PP  
PP1  
µA  
µA  
Program Suspend in Progress  
Program Suspend Current  
1,4  
PPWS  
PP  
V
= V (12 V)  
PP  
PP2  
200  
Program Suspend in Progress  
DC Characteristics, Continued  
V
CC  
2.7 V — 3.6 V  
Sym  
Parameter  
V
Unit  
Test Conditions  
CCQ  
Notes  
Min  
–0.4  
Max  
V
Input Low Voltage  
V
V
*0.22 V  
+0.3 V  
V
V
IL  
CC  
V
Input High Voltage  
2.0  
IH  
CCQ  
V
V
= V Min  
CC  
CC  
V
V
Output Low Voltage  
2
2
–0.10  
0.10  
V
V
= V  
Min  
CCQ  
OL  
CCQ  
I
= 100 µA  
OL  
V
V
= V Min  
CC  
CC  
Output High Voltage  
V
–0.1 V  
= V  
Min  
CCQ  
OH  
CCQ  
CCQ  
I
= –100 µA  
OH  
V
V
V
V
V
V
V
Lock-Out Voltage  
6
6
1.0  
3.6  
V
V
Complete Write Protection  
PPLK  
PP1  
PP  
1.65  
11.4  
1.5  
during Program / Erase  
PP  
Operations  
6,7  
12.6  
PP2  
V
V
Prog/Erase Lock Voltage  
V
V
LKO  
LKO2  
CC  
Prog/Erase Lock Voltage  
1.2  
CCQ  
NOTES:  
1. All currents are in RMS unless otherwise noted. Typical values at nominal V , T = +25 °C.  
CC  
A
2. The test conditions V Max, V  
Max, V Min, and V  
Min refer to the maximum or minimum V or  
CC  
CCQ  
CC  
CCQ CC  
V
voltage listed at the top of each column. V Max = 3.3 V for 0.25µm 32-Mbit devices.  
CCQ  
CC  
3. Automatic Power Savings (APS) reduces I  
to approximately standby levels in static operation (CMOS  
CCR  
inputs).  
4. Sampled, not 100% tested.  
5. I  
and I  
are specified with device de-selected. If device is read while in erase suspend, current draw  
CCES  
CCWS  
is sum of I  
and I  
. If the device is read while in program suspend, current draw is the sum of I  
CCR CCWS  
CCES  
and I  
.
CCR  
6. Erase and Program are inhibited when V < V  
and not guaranteed outside the valid V ranges of V  
PP PP1  
PP  
PPLK  
and V  
.
PP2  
7. Applying V = 11.4 V–12.6 V during program/erase can only be done for a maximum of 1000 cycles on the  
PP  
main blocks and 2500 cycles on the parameter blocks. V may be connected to 12 V for a total of 80 hours  
PP  
maximum. See Section 3.4 for details.  
26  
3UHOLPLQDU\  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
Figure 6. Input/Output Reference Waveform  
VCCQ  
VCCQ  
VCCQ  
TEST POINTS  
INPUT  
OUTPUT  
2
2
0.0  
0645_07  
Figure 7. Test Configuration  
VCCQ  
R1  
Device  
Under Test  
Out  
CL  
R2  
0645_08  
Test Configuration  
C (pF)  
R ()  
R ()  
2
L
1
2.7 V–3.6 V Standard Test  
50  
25K  
25K  
NOTE: C includes jig capacitance.  
L
3UHOLPLQDU\  
27  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
4.5  
AC Characteristics—Read Operations  
Density  
Product  
8 Mbit  
90 ns  
3.0 V – 3.6 V 2.7 V – 3.6 V  
110 ns  
3.0 V – 3.6 V 2.7 V – 3.6 V  
#
Sym  
Parameter  
Unit  
V
CC  
Note  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
t
t
t
t
t
t
t
t
t
Read Cycle Time  
80  
90  
100  
110  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
Address to Output Delay  
CE# to Output Delay  
OE# to Output Delay  
RP# to Output Delay  
CE# to Output in Low Z  
OE# to Output in Low Z  
CE# to Output in High Z  
OE# to Output in High Z  
80  
80  
90  
90  
100  
100  
30  
110  
110  
30  
AVQV  
ELQV  
GLQV  
PHQV  
ELQX  
GLQX  
EHQZ  
GHQZ  
1
1
30  
30  
150  
150  
150  
150  
2
2
2
2
0
0
0
0
0
0
0
0
20  
20  
20  
20  
20  
20  
20  
20  
Output Hold from  
Address, CE#, or OE#  
Change, Whichever  
Occurs First  
R10  
t
2
0
0
0
0
ns  
OH  
NOTES:  
1. OE# may be delayed up to t  
t
after the falling edge of CE# without impact on t  
.
ELQV– GLQV  
ELQV  
2. Sampled, but not 100% tested.  
See Figure 8, “AC Waveform: Read Operations” on page 32.  
See Figure 6, “Input/Output Reference Waveform” on page 27 for timing measurements and maximum  
allowable input slew rate.  
28  
3UHOLPLQDU\  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
AC Characteristics—Read Operations, continued  
Density  
Product  
VCC  
16 Mbit  
90 ns  
70 ns  
80 ns  
110 ns  
3.0 V–3.6 V 2.7 V–3.6 V  
Para-  
meter  
#
Sym  
Unit  
2.7 V–3.6 V  
2.7 V–3.6 V  
3.0 V–3.6 V  
2.7 V–3.6 V  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
Min  
Max  
R1  
R2  
tAVAV Read Cycle Time  
70  
80  
80  
90  
100  
110  
ns  
ns  
Address to Output  
tAVQV  
Delay  
70  
70  
80  
80  
80  
80  
90  
90  
100  
100  
30  
110  
110  
30  
CE# to Output  
tELQV  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Delay(1)  
OE# to Output  
tGLQV  
20  
20  
30  
30  
Delay(1)  
RP# to Output  
tPHQV  
Delay  
150  
150  
150  
150  
150  
150  
CE# to Output in  
tELQX  
0
0
0
0
0
0
0
0
0
0
0
0
Low Z(2)  
OE# to Output in  
tGLQX  
Low Z(2)  
CE# to Output in  
tEHQZ  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
High Z(2)  
OE# to Output in  
tGHQZ  
High Z(2)  
Output Hold from  
Address, CE#, or  
OE# Change,  
Whichever Occurs  
First(2)  
R10  
tOH  
0
0
0
0
0
0
ns  
NOTES:  
1. OE# may be delayed up to t  
t
after the falling edge of CE# without impact on t  
.
ELQV– GLQV  
ELQV  
2. Sampled, but not 100% tested.  
See Figure 8, “AC Waveform: Read Operations” on page 32.  
See Figure 6, “Input/Output Reference Waveform” on page 27 for timing measurements and maximum  
allowable input slew rate.  
3UHOLPLQDU\  
29  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
AC Characteristics—Read Operations, continued  
Density  
Product  
32 Mbit  
100 ns  
Para-  
meter  
70 ns  
90 ns  
110 ns  
#
Sym  
Unit  
V
2.7 V–3.6 V 2.7 V–3.6 V 3.0 V–3.3 V 2.7 V–3.3 V 3.0 V–3.3 V 2.7 V–3.3 V  
Min Max Min Max Min Max Min Max Min Max Min Max  
CC  
Read Cycle Time  
R1  
t
70  
90  
90  
100  
100  
110  
ns  
AVAV  
Address to Output  
Delay  
R2  
R3  
t
70  
70  
90  
90  
90  
90  
100  
100  
100  
100  
110  
110  
ns  
ns  
AVQV  
CE# to Output  
Delay(1)  
t
ELQV  
OE# to Output  
Delay(1)  
R4  
R5  
R6  
t
20  
20  
30  
30  
30  
30  
ns  
ns  
ns  
GLQV  
t
RP# to Output Delay  
150  
150  
150  
150  
150  
150  
PHQV  
CE# to Output in  
Low Z(2)  
t
0
0
0
0
0
0
0
0
0
0
0
0
ELQX  
GLQX  
EHQZ  
GHQZ  
OE# to Output in  
Low Z(2)  
R7  
R8  
R9  
t
t
ns  
ns  
ns  
CE# to Output in  
High Z(2)  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
OE# to Output in  
High Z(2)  
t
Output Hold from  
Address, CE#, or  
OE# Change,  
Whichever Occurs  
First(2)  
R10  
t
0
0
0
0
0
0
ns  
OH  
NOTES:  
1. OE# may be delayed up to t  
t
after the falling edge of CE# without impact on t  
.
ELQV– GLQV  
ELQV  
2. Sampled, but not 100% tested.  
See Figure 8, “AC Waveform: Read Operations” on page 32.  
See Figure 6, “Input/Output Reference Waveform” on page 27 for timing measurements and maximum  
allowable input slew rate.  
30  
3UHOLPLQDU\  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
AC Characteristics—Read Operations, continued  
Density  
Product  
64 Mbit  
90 ns  
2.7 V–3.6 V  
100 ns  
#
Sym  
Parameter  
Unit  
V
2.7 V–3.6 V  
CC  
Note  
Min  
Max  
Min  
Max  
R1  
R2  
R3  
R4  
R5  
R6  
R7  
R8  
R9  
t
Read Cycle Time  
90  
100  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
AVAV  
t
t
Address to Output Delay  
CE# to Output Delay  
OE# to Output Delay  
RP# to Output Delay  
CE# to Output in Low Z  
OE# to Output in Low Z  
CE# to Output in High Z  
OE# to Output in High Z  
90  
90  
100  
100  
20  
AVQV  
ELQV  
GLQV  
PHQV  
1
1
t
20  
t
150  
150  
t
2
2
2
2
0
0
0
0
ELQX  
GLQX  
EHQZ  
GHQZ  
t
t
20  
20  
20  
20  
t
Output Hold from Address, CE#, or OE#  
Change, Whichever Occurs First  
R10  
t
2
0
0
ns  
OH  
NOTES:  
1. OE# may be delayed up to t  
t
after the falling edge of CE# without impact on t  
.
ELQV– GLQV  
ELQV  
2. Sampled, but not 100% tested.  
See Figure 8, “AC Waveform: Read Operations” on page 32.  
See Figure 6, “Input/Output Reference Waveform” on page 27 for timing measurements and maximum  
allowable input slew rate.  
3UHOLPLQDU\  
31  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
Figure 8. AC Waveform: Read Operations  
Device  
Address Selection  
Standby  
Data Valid  
VIH  
Address Stable  
ADDRESSES (A)  
CE# (E)  
VIL  
VIH  
R1  
VIL  
R8  
R9  
VIH  
VIL  
OE# (G)  
VIH  
VIL  
WE# (W)  
R4  
R3  
R7  
R10  
VOH  
VOL  
R6  
High Z  
High Z  
DATA (D/Q)  
Valid Output  
R2  
VIH  
VIL  
RP# (P)  
R5  
32  
3UHOLPLQDU\  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
4.6  
AC Characteristics—Write Operations  
Density  
Product  
8 Mbit  
90 ns  
110 ns  
100  
#
Sym  
Parameter  
3.0 V – 3.6 V  
2.7 V – 3.6 V  
80  
Unit  
90  
110  
Min  
Note  
Min  
Min  
Min  
t
t
/
PHWL  
PHEL  
W1  
W2  
W3  
W4  
W5  
W6  
W7  
W8  
W9  
RP# High Recovery to WE# (CE#) Going Low  
CE# (WE#) Setup to WE# (CE#) Going Low  
WE# (CE#) Pulse Width  
150  
150  
0
150  
150  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
/
ELWL  
WLEL  
0
50  
50  
50  
0
0
70  
60  
70  
0
t
t
/
WLWH  
ELEH  
1
2
2
60  
50  
60  
0
70  
60  
70  
0
t
t
/
DVWH  
DVEH  
Data Setup to WE# (CE#) Going High  
Address Setup to WE# (CE#) Going High  
CE# (WE#) Hold Time from WE# (CE#) High  
Data Hold Time from WE# (CE#) High  
Address Hold Time from WE# (CE#) High  
WE# (CE#) Pulse Width High  
t
t
/
AVWH  
AVEH  
t
t
/
/
/
WHEH  
EHWH  
t
t
WHDX  
EHDX  
2
2
1
0
0
0
0
t
t
WHAX  
EHAX  
0
0
0
0
t
t
WHWL /  
EHEL  
30  
30  
30  
30  
t
t
/
VPWH  
VPEH  
W10  
W11  
W12  
V
V
Setup to WE# (CE#) Going High  
Hold from Valid SRD  
3
3
3
200  
0
200  
0
200  
0
200  
0
ns  
ns  
ns  
PP  
PP  
t
QVVL  
t
t
/
BHWH  
BHEH  
WP# Setup to WE# (CE#) Going High  
0
0
0
0
W13  
W14  
t
t
WP# Hold from Valid SRD  
3
3
0
0
0
0
ns  
ns  
QVBL  
WE# High to OE# Going Low  
30  
30  
30  
30  
WHGL  
NOTES:  
1. Write pulse width (t ) is defined from CE# or WE# going low (whichever goes low last) to CE# or WE# going  
WP  
high (whichever goes high first). Hence, t  
= t  
= t  
= t  
= t  
. Similarly, write pulse width  
WP  
WLWH  
ELEH  
WLEH  
ELWH  
high (t  
) is defined from CE# or WE# going high (whichever goes high first) to CE# or WE# going low  
WPH  
(whichever goes low first). Hence, t  
= t  
= t  
= t  
= t  
.
WPH  
WHWL  
EHEL  
WHEL  
EHWL  
2. Refer to Table 5, “Command Bus Operations” on page 13 for valid A or D  
.
IN  
IN  
3. Sampled, but not 100% tested.  
Write timing characteristics during erase suspend are the same as during write-only operations.  
See Figure 6, “Input/Output Reference Waveform” on page 27 for timing measurements and maximum  
allowable input slew rate.  
See Figure 8, “AC Waveform: Read Operations” on page 32.  
4. V Max = 3.3 V for 32-Mbit and 64-Mbit densities.  
CC  
3UHOLPLQDU\  
33  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
AC Characteristics—Write Operations, continued  
Density  
Product  
16 Mbit  
90 ns  
70 ns 80 ns  
110 ns  
100  
#
Sym  
Parameter  
3.0 V – 3.6 V  
2.7 V – 3.6 V  
80  
Unit  
70  
80  
90  
110  
Min  
Note  
Min  
Min  
Min  
Min  
Min  
t
t
/
RP# High Recovery to WE#  
(CE#) Going Low  
PHWL  
PHEL  
W1  
W2  
W3  
W4  
W5  
W6  
W7  
W8  
W9  
150  
0
150  
0
150  
150  
0
150  
150  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
/
CE# (WE#) Setup to WE#  
(CE#) Going Low  
ELWL  
WLEL  
0
50  
50  
50  
0
0
70  
60  
70  
0
t
t
/
WLWH  
ELEH  
WE# (CE#) Pulse Width  
1
2
2
45  
40  
50  
0
50  
40  
50  
0
60  
50  
60  
0
70  
60  
70  
0
t
t
/
Data Setup to WE# (CE#)  
Going High  
DVWH  
DVEH  
t
t
/
Address Setup to WE# (CE#)  
Going High  
AVWH  
AVEH  
t
t
/
/
/
CE# (WE#) Hold Time from  
WE# (CE#) High  
WHEH  
EHWH  
t
t
Data Hold Time from WE#  
(CE#) High  
WHDX  
EHDX  
2
2
1
0
0
0
0
0
0
t
t
Address Hold Time from WE#  
(CE#) High  
WHAX  
EHAX  
0
0
0
0
0
0
t
t
WHWL /  
EHEL  
WE# (CE#) Pulse Width High  
25  
30  
30  
30  
30  
30  
t
t
/
V
Setup to WE# (CE#)  
PP  
VPWH  
VPEH  
W10  
W11  
W12  
3
3
3
200  
0
200  
0
200  
0
200  
0
200  
0
200  
0
ns  
ns  
ns  
Going High  
t
V
PP  
Hold from Valid SRD  
QVVL  
t
t
/
WP# Setup to WE# (CE#)  
Going High  
BHWH  
BHEH  
0
0
0
0
0
0
W13  
W14  
t
t
WP# Hold from Valid SRD  
3
3
0
0
0
0
0
0
ns  
ns  
QVBL  
WE# High to OE# Going Low  
30  
30  
30  
30  
30  
30  
WHGL  
NOTES:  
1. Write pulse width (t ) is defined from CE# or WE# going low (whichever goes low last)to CE# or WE# going  
WP  
high (whichever goes high first). Hence, t  
= t  
= t  
= t  
= t  
. Similarly, write pulse width  
WP  
WLWH  
ELEH  
WLEH  
ELWH  
high (t  
) is defined from CE# or WE# going high (whichever goes high first) to CE# or WE# going low  
WPH  
(whichever goes low first). Hence, t  
= t  
= t  
= t  
= t  
.
WPH  
WHWL  
EHEL  
WHEL  
EHWL  
2. Refer to Table 5, “Command Bus Operations” on page 13 for valid A or D  
.
IN  
IN  
3. Sampled, but not 100% tested.  
Write timing characteristics during erase suspend are the same as during write-only operations.  
See Figure 6, “Input/Output Reference Waveform” on page 27 for timing measurements and maximum  
allowable input slew rate.  
See Figure 8, “AC Waveform: Read Operations” on page 32.  
4. V Max = 3.3 V for 32-Mbit and 64-Mbit densities.  
CC  
34  
3UHOLPLQDU\  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
AC Characteristics—Write Operations, continued  
Density  
Product  
32 Mbit  
100 ns  
70 ns  
90 ns  
110 ns  
100  
#
Sym  
Parameter  
3.0 V – 3.6 V(4)  
2.7 V – 3.6 V(4)  
Note  
90  
Unit  
70  
90  
100  
Min  
110  
Min  
Min  
Min  
Min  
Min  
t
t
/
RP# High Recovery to WE#  
(CE#) Going Low  
PHWL  
PHEL  
W1  
W2  
W3  
W4  
W5  
W6  
W7  
W8  
W9  
150  
0
150  
0
150  
150  
0
150  
150  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
/
CE# (WE#) Setup to WE#  
(CE#) Going Low  
ELWL  
WLEL  
0
60  
50  
60  
0
0
70  
60  
70  
0
t
t
/
WLWH  
ELEH  
WE# (CE#) Pulse Width  
1
2
2
45  
40  
50  
0
60  
40  
60  
0
70  
60  
70  
0
70  
60  
70  
0
t
t
/
Data Setup to WE# (CE#)  
Going High  
DVWH  
DVEH  
t
t
/
Address Setup to WE# (CE#)  
Going High  
AVWH  
AVEH  
t
t
/
/
/
CE# (WE#) Hold Time from  
WE# (CE#) High  
WHEH  
EHWH  
t
t
Data Hold Time from WE#  
(CE#) High  
WHDX  
EHDX  
2
2
1
0
0
0
0
0
0
t
t
Address Hold Time from WE#  
(CE#) High  
WHAX  
EHAX  
0
0
0
0
0
0
t
t
WHWL /  
EHEL  
WE# (CE#) Pulse Width High  
25  
30  
30  
30  
30  
30  
t
t
/
V
Setup to WE# (CE#)  
PP  
VPWH  
VPEH  
W10  
W11  
W12  
3
3
3
200  
0
200  
0
200  
0
200  
0
200  
0
200  
0
ns  
ns  
ns  
Going High  
t
V
PP  
Hold from Valid SRD  
QVVL  
t
t
/
WP# Setup to WE# (CE#)  
Going High  
BHWH  
BHEH  
0
0
0
0
0
0
W13  
W14  
t
t
WP# Hold from Valid SRD  
3
3
0
0
0
0
0
0
ns  
ns  
QVBL  
WE# High to OE# Going Low  
30  
30  
30  
30  
30  
30  
WHGL  
NOTES:  
1. Write pulse width (t ) is defined from CE# or WE# going low (whichever goes low last) to CE# or WE# going  
WP  
high (whichever goes high first). Hence, t  
= t  
= t  
= t  
= t  
. Similarly, write pulse width  
WP  
WLWH  
ELEH  
WLEH  
ELWH  
high (t  
) is defined from CE# or WE# going high (whichever goes high first) to CE# or WE# going low  
WPH  
(whichever goes low first). Hence, t  
= t  
= t  
= t  
= t  
.
WPH  
WHWL  
EHEL  
WHEL  
EHWL  
2. Refer to Table 5, “Command Bus Operations” on page 13 for valid A or D  
.
IN  
IN  
3. Sampled, but not 100% tested.  
Write timing characteristics during erase suspend are the same as during write-only operations.  
See Figure 6, “Input/Output Reference Waveform” on page 27 for timing measurements and maximum  
allowable input slew rate.  
See Figure 8, “AC Waveform: Read Operations” on page 32.  
4. V Max = 3.3 V for 0.25µm 32-Mbit devices.  
CC  
3UHOLPLQDU\  
35  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
AC Characteristics—Write Operations, continued  
Density  
Product  
64 Mbit  
90 ns  
100 ns  
100  
#
Sym  
Parameter  
Unit  
2.7 V – 3.6 V  
90  
Note  
Min  
Min  
t
t
/
PHWL  
PHEL  
W1  
W2  
W3  
W4  
W5  
W6  
W7  
W8  
W9  
RP# High Recovery to WE# (CE#) Going Low  
CE# (WE#) Setup to WE# (CE#) Going Low  
WE# (CE#) Pulse Width  
150  
0
150  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
t
t
/
ELWL  
WLEL  
t
t
/
WLWH  
ELEH  
1
2
2
60  
40  
60  
0
70  
40  
60  
0
t
t
/
DVWH  
DVEH  
Data Setup to WE# (CE#) Going High  
Address Setup to WE# (CE#) Going High  
CE# (WE#) Hold Time from WE# (CE#) High  
Data Hold Time from WE# (CE#) High  
Address Hold Time from WE# (CE#) High  
WE# (CE#) Pulse Width High  
t
t
/
AVWH  
AVEH  
t
t
/
/
/
WHEH  
EHWH  
t
t
WHDX  
EHDX  
2
2
1
0
0
t
t
WHAX  
EHAX  
0
0
t
t
WHWL /  
EHEL  
30  
30  
t
t
/
VPWH  
VPEH  
W10  
W11  
W12  
V
V
Setup to WE# (CE#) Going High  
Hold from Valid SRD  
3
3
3
200  
0
200  
0
ns  
ns  
ns  
PP  
t
QVVL  
PP  
t
t
/
BHWH  
BHEH  
WP# Setup to WE# (CE#) Going High  
0
0
W13  
W14  
t
t
WP# Hold from Valid SRD  
3
3
0
0
ns  
ns  
QVBL  
WE# High to OE# Going Low  
30  
30  
WHGL  
NOTES:  
1. Write pulse width (t ) is defined from CE# or WE# going low (whichever goes low last)to CE# or WE# going  
WP  
high (whichever goes high first). Hence, t  
= t  
= t  
= t  
= t  
. Similarly, write pulse width  
WP  
WLWH  
ELEH  
WLEH  
ELWH  
high (t  
) is defined from CE# or WE# going high (whichever goes high first) to CE# or WE# going low  
WPH  
(whichever goes low first). Hence, t  
= t  
= t  
= t  
= t  
.
WPH  
WHWL  
EHEL  
WHEL  
EHWL  
2. Refer to Table 5, “Command Bus Operations” on page 13 for valid A or D  
.
IN  
IN  
3. Sampled, but not 100% tested.  
Write timing characteristics during erase suspend are the same as during write-only operations.  
See Figure 6, “Input/Output Reference Waveform” on page 27 for timing measurements and maximum  
allowable input slew rate.  
See Figure 8, “AC Waveform: Read Operations” on page 32.  
36  
3UHOLPLQDU\  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
4.7  
Erase and Program Timings  
V
1.65 V–3.6 V  
11.4 V–12.6 V  
PP  
Symbol  
Parameter  
Unit  
Note  
Typ(1)  
Max  
Typ(1)  
Max  
4-KW Parameter Block  
Word Program Time  
t
t
2, 3  
0.10  
0.8  
12  
0.30  
0.03  
0.12  
s
s
BWPB  
32-KW Main Block  
Word Program Time  
2, 3  
2, 3  
2, 3  
2, 3  
2, 3  
2.4  
200  
200  
4
0.24  
8
1
185  
185  
4
BWMB  
Word Program Time for 0.18  
Micron Product  
µs  
µs  
s
t
/ t  
WHQV1 EHQV1  
Word Program Time for 0.25  
Micron Product  
22  
8
4-KW Parameter Block  
Erase Time  
t
t
/ t  
0.5  
1
0.4  
0.6  
WHQV2 EHQV2  
32-KW Main Block  
Erase Time  
/ t  
5
5
s
WHQV3 EHQV3  
t
t
/ t  
Program Suspend Latency  
Erase Suspend Latency  
3
3
5
5
10  
20  
5
5
10  
20  
µs  
µs  
WHRH1 EHRH1  
/ t  
WHRH2 EHRH2  
NOTES:  
1. Typical values measured at T = +25 °C and nominal voltages.  
A
2. Excludes external system-level overhead.  
3. Sampled, but not 100% tested.  
3UHOLPLQDU\  
37  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
Figure 9. AC Waveform: Program and Erase Operations  
A
B
C
D
E
F
VIH  
VIL  
ADDRESSES [A]  
AIN  
AIN  
W5  
W8  
(Note 1)  
VIH  
CE# (WE#) [E(W)]  
OE# [G]  
VIL  
VIH  
W2  
W6  
VIL  
W14  
W9  
(Note 1)  
VIH  
VIL  
WE# (CE) [W(E)]  
W3  
W4  
W7  
VIH  
VIL  
High Z  
W1  
Valid  
SRD  
DATA [D/Q]  
DIN  
DIN  
DIN  
VIH  
VIL  
RP# [P]  
WP#  
W12  
W13  
W11  
VIH  
VIL  
W10  
VPPH  
2
1
VPPH  
VPP [V]  
VPPLK  
VIL  
NOTES:  
1. CE# must be toggled low when reading Status Register Data. WE# must be inactive (high) when reading  
Status Register Data.  
a. V Power-Up and Standby.  
CC  
b. Write Program or Erase Setup Command.  
c. Write Valid Address and Data (for Program) or Erase Confirm Command.  
d. Automated Program or Erase Delay.  
e. Read Status Register Data (SRD): reflects completed program/erase operation.  
f. Write Read Array Command.  
38  
3UHOLPLQDU\  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
4.8  
Reset Operations  
Figure 10. AC Waveform: Reset Operations  
V
IH  
RP# (P)  
tPHQV  
tPHWL  
tPHEL  
VIL  
tPLPH  
(A) Reset during Read Mode  
Abort  
Complete  
tPHQV  
tPHWL  
tPHEL  
t PLRH  
VIH  
VIL  
RP# (P)  
t PLPH  
tPLPH  
t PLRH  
<
(B) Reset during Program or Block Erase,  
Abort Deep  
Complete Power-  
tPHQV  
tPHWL  
tPHEL  
Down  
t PLRH  
VIH  
VIL  
RP# (P)  
t PLPH  
(C) Reset Program or Block Erase,  
>
tPLPH t PLRH  
Table 11. Reset Specifications  
V
2.7 V – 3.6 V  
Max  
CC  
Symbol  
Parameter  
Notes  
Unit  
Min  
RP# Low to Reset during Read  
t
(If RP# is tied to V , this specification is not  
2,4  
100  
ns  
PLPH  
CC  
applicable)  
t
RP# Low to Reset during Block Erase  
RP# Low to Reset during Program  
3,4  
22  
µs  
µs  
PLRH1  
t
3,4  
12  
PLRH2  
NOTES:  
1. If t  
is < 100 ns the device may still reset but this is not guaranteed.  
PLPH  
2. If RP# is asserted while a block erase or word program operation is not executing, the reset will complete  
within 100 ns.  
3. Sampled, but not 100% tested.  
See Section 3.1.4 for a full description of these conditions.  
3UHOLPLQDU\  
39  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
5.0  
Ordering Information  
T E 2 8 F 3 2 0 C 3 T C 7 0  
Access Speed (ns)  
(70, 80, 90, 100, 110)  
Package  
TE = 48-Lead TSOP  
GT = 48-Ball µBGA* CSP  
GE = VF BGA CSP  
RC = Easy BGA  
Lithography  
A = 0.25 µm  
C = 0.18 µm  
Product line designator  
for all Intel® Flash products  
T = Top Blocking  
B = Bottom Blocking  
Device Density  
640 = x16 (64 Mbit)  
320 = x16 (32 Mbit)  
160 = x16 (16 Mbit)  
800 = x16 (8 Mbit)  
Product Family  
C3 = 3 Volt Advanced+ Boot Block  
VCC = 2.7 V–3.6 V  
VPP = 2.7 V–3.6 V or  
11.4 V–12.6 V  
VALID COMBINATIONS (All Extended Temperature)  
48-Lead TSOP  
48-Ball µBGA* CSP  
48-Ball VF BGA  
Easy BGA  
TE28F640C3TC90  
TE28F640C3BC90  
GT28F640C3TC90  
GT28F640C3BC90  
RC28F640C3TC90  
RC28F640C3BC90  
Extended  
64 Mbit  
TE28F640C3TC100  
TE28F640C3BC100  
GT28F640C3TC100  
GT28F640C3BC100  
RC28F640C3TC100  
RC28F640C3BC100  
TE28F320C3TC70  
TE28F320C3BC70  
GE28F320C3TC70  
GE28F320C3BC70  
RC28F320C3TC70  
RC28F320C3BC70  
TE28F320C3TC90  
TE28F320C3BC90  
GE28F320C3TC90  
GE28F320C3BC90  
RC28F320C3TC90  
RC28F320C3BC90  
Extended  
32 Mbit  
TE28F320C3TA100  
TE28F320C3BA100  
GT28F320C3TA100  
GT28F320C3BA100  
RC28F320C3TA100  
RC28F320C3BA100  
TE28F320C3TA110  
TE28F320C3BA110  
GT28F320C3TA110  
GT28F320C3BA110  
RC28F320C3TA110  
RC28F320C3BA110  
TE28F160C3TC70  
TE28F160C3BC70  
GE28F160C3TC70  
GE28F160C3BC70  
RC28F160C3TC70  
RC28F160C3BC70  
TE28F160C3TC80  
TE28F160C3BC80  
GE28F160C3TC80  
GE28F160C3BC80  
RC28F160C3TC80  
RC28F160C3BC80  
Extended  
16 Mbit  
TE28F160C3TA90  
TE28F160C3BA90  
GT28F160C3TA90  
GT28F160C3BA90  
RC28F160C3TA90  
RC28F160C3BA90  
TE28F160C3TA110  
TE28F160C3BA110  
GT28F160C3TA110  
GT28F160C3BA110  
RC28F160C3TA110  
RC28F160C3BA110  
TE28F800C3TA90  
TE28F800C3BA90  
RC28F800C3TA90  
RC28F800C3BA90  
Extended  
8 Mbit  
TE28F800C3TA110  
TE28F800C3BA110  
RC28F800C3TA110  
RC28F800C3BA110  
NOTE:  
1. The second line of the 48-ball µBGA package top side mark specifies assembly codes. For samples only, the  
first character signifies either “E” for engineering samples or “S” for silicon daisy chain samples. All other  
assembly codes without an “E” or “S” as the first character are production units.  
40  
3UHOLPLQDU\  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
6.0  
Additional Information  
Order Number  
Document/Tool  
297938  
292216  
3 Volt Advanced+ Boot Block Flash Memory Specification Update  
AP-658 Designing for Upgrade to the Advanced+ Boot Block Flash Memory  
AP-657 Designing with the Advanced+ Boot Block Flash Memory  
Architecture  
292215  
Contact your Intel  
Representative  
Intel® Flash Data Integrator (IFDI) Software Developer’s Kit  
297874  
IFDI Interactive: Play with Intel® Flash Data Integrator on Your PC  
NOTES:  
1. Please call the Intel Literature Center at (800) 548-4725 to request Intel documentation. International  
customers should contact their local Intel or distribution sales office.  
2. Visit Intel’s World Wide Web home page at http://www.Intel.com or http://developer.intel.com for technical  
documentation and tools.  
3UHOLPLQDU\  
41  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
Appendix A WSM Current/Next States, Sheet 1 of 2  
Command Input (and Next State)  
Data  
When  
Read  
Read  
Array  
(FFH)  
Program  
Setup (10/  
40H)  
Erase  
Setup  
(20H)  
Erase  
Confirm  
(D0H)  
Prog/Ers  
Suspend  
(B0H)  
Prog/Ers  
Resume  
(D0)  
Read  
Status  
(70H)  
Clear  
Status  
(50H)  
SR.  
7
Current State  
Read Array  
Read Status  
Read Config.  
Read Query  
“1”  
“1”  
“1”  
“1”  
Array  
Status  
Config  
CFI  
Read Array  
Read Array  
Read Array  
Read Array  
Prog. Setup  
Prog. Setup  
Prog. Setup  
Prog. Setup  
Ers. Setup  
Ers. Setup  
Ers. Setup  
Ers. Setup  
Read Array  
Read Array  
Read Array  
Read Array  
Read Sts.  
Read Sts.  
Read Sts.  
Read Sts.  
Read Array  
Read Array  
Read Array  
Read Array  
Lock  
(Done)  
Lock  
Cmd. Error  
Lock  
(Done)  
Lock Setup  
“1”  
Status  
Lock Command Error  
Lock Cmd. Error  
Lock Cmd. Error  
Lock Oper. (Done)  
Prot. Prog. Setup  
“1”  
“1”  
“1”  
Status  
Status  
Status  
Read Array  
Read Array  
Prog. Setup  
Prog. Setup  
Ers. Setup  
Ers. Setup  
Read Array  
Read Array  
Read Sts.  
Read Sts.  
Read Array  
Read Array  
Protection Register Program  
Prot. Prog.  
(Not Done)  
“0”  
Status  
Protection Register Program (Not Done)  
Prot. Prog. (Done)  
Prog. Setup  
“1”  
“1”  
Status  
Status  
Read Array  
Prog. Setup  
Ers. Setup  
Read Array  
Program  
Read Sts.  
Read Array  
Program (Not  
Done)  
Prog. Sus.  
Status  
“0”  
“1”  
“1”  
“1”  
“1”  
“1”  
Status  
Status  
Array  
Config  
CFI  
Program (Not Done)  
Program (Not Done)  
Prog. Sus.  
Read Array  
Program Suspend  
Read Array  
Prog. (Not  
Done)  
Prog. Sus.  
Rd. Array  
Program  
Prog.Sus.  
Status  
Prog. Sus.  
Rd. Array  
Prog. Susp. Status  
(Not Done)  
Prog. Susp. Read  
Array  
Prog. Sus.  
Read Array  
Program Suspend  
Read Array  
Prog. (Not  
Done)  
Prog. Sus.  
Rd. Array  
Program  
(Not Done)  
Prog.Sus.  
Status  
Prog. Sus.  
Rd. Array  
Prog. Susp. Read  
Config  
Prog. Sus.  
Read Array  
Program Suspend  
Read Array  
Prog. (Not  
Done)  
Prog. Sus.  
Rd. Array  
Program  
(Not Done)  
Prog.Sus.  
Status  
Prog. Sus.  
Rd. Array  
Prog. Susp. Read  
Query  
Prog. Sus.  
Read Array  
Program Suspend  
Read Array  
Prog. (Not  
Done)  
Prog. Sus.  
Rd. Array  
Program  
(Not Done)  
Prog.Sus.  
Status  
Prog. Sus.  
Rd. Array  
Read  
Status  
Program (Done)  
Erase Setup  
Status  
Read Array  
Prog. Setup  
Ers. Setup  
Ers. Setup  
Read Array  
Read Array  
Erase  
(Not  
Done)  
Erase Cmd.  
Error  
Erase  
(Not Done)  
“1”  
Status  
Erase Command Error  
Erase Command Error  
Read  
Erase Cmd. Error  
Erase (Not Done)  
Ers. Susp. Status  
Erase Susp. Array  
“1”  
“0”  
“1”  
“1”  
“1”  
Status  
Status  
Status  
Array  
Read Array  
Prog. Setup  
Read Array  
Read Array  
Status  
Erase Sus.  
Status  
Erase (Not Done)  
Erase (Not Done)  
EraseSus.  
Read Array  
Ers. Sus.  
Rd. Array  
Ers. Sus.  
Rd. Array  
EraseSus.  
Status  
Ers. Sus.  
Rd. Array  
Prog. Setup  
Prog. Setup  
Prog. Setup  
Erase  
Erase  
Erase  
Erase  
Erase  
Erase  
Erase  
Erase  
EraseSus.  
Read Array  
Ers. Sus.  
Rd. Array  
Ers. Sus.  
Rd. Array  
EraseSus.  
Status  
Ers. Sus.  
Rd. Array  
Ers. Susp. Read  
Config  
EraseSus.  
Read Array  
Ers. Sus.  
Rd. Array  
Ers. Sus.  
Rd. Array  
EraseSus.  
Status  
Ers. Sus.  
Rd. Array  
Config  
Ers. Susp. Read  
Query  
EraseSus.  
Read Array  
Ers. Sus.  
Rd. Array  
Ers. Sus.  
Rd. Array  
EraseSus.  
Status  
Ers. Sus.  
Rd. Array  
“1”  
“1”  
CFI  
Prog. Setup  
Prog. Setup  
Erase (Done)  
Status  
Read Array  
Ers. Setup  
Read Array  
Read Sts.  
Read Array  
42  
3UHOLPLQDU\  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
Appendix A: WSM Current/Next States, Sheet 2 of 2  
Command Input (and Next State)  
Lock Setup  
(60H)  
Lock Down  
Confirm  
(2FH)  
Read Config  
(90H)  
Read Query  
(98H)  
Prot. Prog.  
Setup (C0H)  
Lock Confirm  
(01H)  
Unlock Confirm  
(D0H)  
Current State  
Read Array  
Read Status  
Read Config.  
Read Query  
Lock Setup  
Read Config.  
Read Config.  
Read Config.  
Read Config.  
Read Query  
Read Query  
Read Query  
Read Query  
Lock Setup  
Lock Setup  
Lock Setup  
Lock Setup  
Prot. Prog. Setup  
Prot. Prog. Setup  
Prot. Prog. Setup  
Prot. Prog. Setup  
Read Array  
Read Array  
Read Array  
Read Array  
Locking Command Error  
Lock Operation (Done)  
Read Array  
Lock Cmd. Error  
Read Config.  
Read Config.  
Read Query  
Read Query  
Lock Setup  
Lock Setup  
Prot. Prog. Setup  
Prot. Prog. Setup  
Lock Oper.  
(Done)  
Read Array  
Prot. Prog. Setup  
Protection Register Program  
Prot. Prog.  
(Not Done)  
Protection Register Program (Not Done)  
Prot. Prog.  
(Done)  
Read Config.  
Read Query  
Lock Setup  
Prot. Prog. Setup  
Program  
Read Array  
Prog. Setup  
Program  
(Not Done)  
Program (Not Done)  
Prog. Susp.  
Status  
Prog. Susp.  
Read Config.  
Prog. Susp.  
Read Query  
Program  
(Not Done)  
Program Suspend Read Array  
Prog. Susp.  
Read Array  
Prog. Susp.  
Prog. Susp.  
Read Query  
Program  
Program Suspend Read Array  
Program Suspend Read Array  
Program Suspend Read Array  
Read Config.  
(Not Done)  
Prog. Susp.  
Read Config.  
Prog. Susp.  
Read Config.  
Prog. Susp.  
Read Query  
Program  
(Not Done)  
Prog. Susp.  
Read Query.  
Prog. Susp.  
Read Config.  
Prog. Susp.  
Read Query  
Program  
(Not Done)  
Program  
(Done)  
Read Config.  
Read Config.  
Read Query  
Read Query  
Lock Setup  
Prot. Prog. Setup  
Read Array  
Read Array  
Erase  
Setup  
Erase  
(Not Done)  
Erase Command Error  
Erase Cmd.  
Error  
Lock Setup  
Prot. Prog. Setup  
Erase (Not Done)  
Erase  
(Not Done)  
Erase Susp.  
Status  
Ers. Susp. Read  
Config.  
Erase Suspend  
Read Query  
Erase  
Lock Setup  
Lock Setup  
Lock Setup  
Erase Suspend Read Array  
(Not Done)  
Erase Suspend  
Array  
Ers. Susp. Read  
Config.  
Erase Suspend  
Read Query  
Erase  
(Not Done)  
Erase Suspend Read Array  
Erase Suspend Read Array  
Erase Suspend Read Array  
Eras Sus. Read  
Config  
Erase Suspend  
Read Config.  
Erase Suspend  
Read Query  
Erase  
(Not Done)  
Eras Sus. Read  
Query  
Erase Suspend  
Read Config.  
Erase Suspend  
Read Query  
Erase  
(Not Done)  
Lock Setup  
Lock Setup  
Ers.(Done)  
Read Config.  
Read Query  
Prot. Prog. Setup  
Read Array  
3UHOLPLQDU\  
43  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
Appendix B Program/Erase Flowcharts  
Figure 11. Automated Word Programming Flowchart  
Start  
Bus Operation  
Command  
Program Setup  
Program  
Comments  
Write  
Data = 40H  
Write 40H  
Data = Data to Program  
Addr = Location to Program  
Write  
Program Address/Data  
Status Register Data Toggle  
CE# or OE# to Update Status  
Register Data  
Read  
Check SR.7  
1 = WSM Ready  
0 = WSM Busy  
Read Status Register  
Standby  
Repeat for subsequent programming operations.  
No  
SR.7 = 1?  
Yes  
SR Full Status Check can be done after each program or after a sequence of  
program operations.  
Write FFH after the last program operation to reset device to read array mode.  
Full Status  
Check if Desired  
Program Complete  
FULL STATUS CHECK PROCEDURE  
Read Status Register  
Data (See Above)  
Bus Operation  
Standby  
Command  
Comments  
Check SR.3  
1
1 = VPP Low Detect  
SR.3 =  
VPP Range Error  
Check SR.4  
1 = VPP Program Error  
Standby  
0
SR.4 =  
0
Check SR.1  
1
1
1 = Attempted Program to  
Locked Block - Program  
Aborted  
Standby  
Programming Error  
SR.3 MUST be cleared, if set during a program attempt, before further  
attempts are allowed by the Write State Machine.  
Attempted Program to  
Locked Block - Aborted  
SR.1 =  
SR.1, SR.3 and SR.4 are only cleared by the Clear Staus Register Command,  
in cases where multiple bytes are programmed before full status is checked.  
0
If an error is detected, clear the status register before attempting retry or other  
error recovery.  
Program Successful  
44  
3UHOLPLQDU\  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
Figure 12. Program Suspend/Resume Flowchart  
Bus  
Operation  
Command  
Comments  
Data = B0H  
Start  
Program  
Suspend  
Write  
Addr = X  
Write B0H  
Data=70H  
Addr=X  
Write  
Read  
Read Status  
Status Register Data Toggle  
CE# or OE# to Update Status  
Register Data  
Write 70H  
Addr = X  
Check SR.7  
Standby  
1 = WSM Ready  
0 = WSM Busy  
Read Status Register  
Check SR.2  
Standby  
Write  
1 = Program Suspended  
0 = Program Completed  
0
SR.7 =  
Data = FFH  
Addr = X  
Read Array  
1
0
Read array data from block  
other than the one being  
programmed.  
SR.2 =  
Program Completed  
Read  
1
Program  
Resume  
Data = D0H  
Addr = X  
Write  
Write FFH  
Read Array Data  
No  
Done  
Reading  
Yes  
Write D0H  
Write FFH  
Program Resumed  
Read Array Data  
3UHOLPLQDU\  
45  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
Figure 13. Automated Block Erase Flowchart  
Start  
Bus Operation  
Command  
Comments  
Data = 20H  
Write  
Erase Setup  
Addr = Within Block to Be  
Erased  
Write 20H  
Data = D0H  
Write  
Read  
Erase Confirm  
Addr = Within Block to Be  
Erased  
Write D0H and  
Block Address  
Status Register Data Toggle  
CE# or OE# to Update Status  
Register Data  
Read Status Register  
Suspend  
Erase Loop  
Check SR.7  
1 = WSM Ready  
0 = WSM Busy  
Standby  
No  
0
Yes  
SR.7 =  
Suspend Erase  
Repeat for subsequent block erasures.  
Full Status Check can be done after each block erase or after a sequence of  
block erasures.  
1
Full Status  
Check if Desired  
Write FFH after the last write operation to reset device to read array mode.  
Block Erase Complete  
FULL STATUS CHECK PROCEDURE  
Read Status Register  
Data (See Above)  
Bus Operation  
Command  
Comments  
Check SR.3  
Standby  
1
1 = VPP Low Detect  
SR.3 =  
VPP Range Error  
Check SR.4,5  
Standby  
Standby  
Standby  
Both 1 = Command Sequence  
Error  
0
SR.4,5 =  
0
1
1
1
Check SR.5  
1 = Block Erase Error  
Command Sequence  
Error  
Check SR.1  
1 = Attempted Erase of  
Locked Block - Erase Aborted  
SR.5 =  
0
Block Erase Error  
SR. 1 and 3 MUST be cleared, if set during an erase attempt, before further  
attempts are allowed by the Write State Machine.  
SR.1, 3, 4, 5 are only cleared by the Clear Staus Register Command, in cases  
where multiple bytes are erased before full status is checked.  
Attempted Erase of  
Locked Block - Aborted  
SR.1 =  
0
If an error is detected, clear the status register before attempting retry or other  
error recovery.  
Block Erase  
Successful  
46  
3UHOLPLQDU\  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
Figure 14. Erase Suspend/Resume Flowchart  
Bus  
Operation  
Command  
Erase Suspend  
Read Status  
Comments  
Data = B0H  
Start  
Write  
Addr = X  
Write B0H  
Data=70H  
Addr=X  
Write  
Read  
Status Register Data Toggle  
CE# or OE# to Update Status  
Register Data  
Write 70H  
Addr = X  
Check SR.7  
Standby  
1 = WSM Ready  
0 = WSM Busy  
Read Status Register  
Check SR.6  
Standby  
Write  
1 = Erase Suspended  
0 = Erase Completed  
0
SR.7 =  
Data = FFH  
Addr = X  
Read Array  
1
0
Read array data from block  
other than the one being  
erased.  
SR.6 =  
Erase Completed  
Read  
1
Data = D0H  
Addr = X  
Write  
Erase Resume  
Write FFH  
Read Array Data  
No  
Done  
Reading  
Yes  
Write D0H  
Write FFH  
Erase Resumed  
Read Array Data  
3UHOLPLQDU\  
47  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
Figure 15. Locking Operations Flowchart  
Bus  
Operation  
Command  
Comments  
Data = 60H  
Start  
Write  
Write  
Config. Setup  
Addr = X  
Write 60H  
(Configuration Setup)  
Data= 01H (Lock Block)  
D0H (Unlock Block)  
2FH (Lockdown Block)  
Addr=Within block to lock  
Lock, Unlock,  
or Lockdown  
Write  
01H, D0H, or 2FH  
Write  
Read  
Data = 90H  
(Optional)  
Configuration Addr = X  
Read  
(Optional)  
Block Lock  
Status  
Block Lock Status Data  
Addr = Second addr of block  
Write 90H  
(Read Configuration)  
Confirm Locking Change on  
DQ1, DQ0. (See Block Locking  
State Table for valid  
Standby  
(Optional)  
combinations.)  
Read Block Lock Status  
Locking  
Change  
Confirmed?  
No  
Write FFh  
(Read Array)  
Locking Change  
Complete  
48  
3UHOLPLQDU\  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
Figure 16. Protection Register Programming Flowchart  
Start  
Bus Operation  
Write  
Command  
Comments  
Protection Program  
Setup  
Data = C0H  
Write C0H  
(Protection Reg.  
Program Setup)  
Data = Data to Program  
Addr = Location to Program  
Write  
Protection Program  
Status Register Data Toggle  
CE# or OE# to Update Status  
Register Data  
Write Protect. Register  
Address/Data  
Read  
Check SR.7  
Standby  
1 = WSM Ready  
0 = WSM Busy  
Read Status Register  
Protection Program operations can only be addressed within the protection  
register address space. Addresses outside the defined space will return an  
error.  
No  
SR.7 = 1?  
Yes  
Repeat for subsequent programming operations.  
SR Full Status Check can be done after each program or after a sequence of  
program operations.  
Full Status  
Check if Desired  
Write FFH after the last program operation to reset device to read array mode.  
Program Complete  
FULL STATUS CHECK PROCEDURE  
Bus Operation  
Standby  
Command  
Comments  
SR.1 SR.3 SR.4  
Read Status Register  
Data (See Above)  
0
1
1
VPP Low  
1, 1  
0
0
1
Prot. Reg.  
Prog. Error  
Standby  
SR.3, SR.4 =  
SR.1, SR.4 =  
VPP Range Error  
1
0
1
Register  
Locked:  
Aborted  
0,1  
1,1  
Standby  
Protection Register  
Programming Error  
SR.3 MUST be cleared, if set during a program attempt, before further  
attempts are allowed by the Write State Machine.  
Attempted Program to  
Locked Register -  
Aborted  
SR.1, SR.3 and SR.4 are only cleared by the Clear Staus Register Command,  
in cases of multiple protection register program operations before full status is  
checked.  
SR.1, SR.4 =  
If an error is detected, clear the status register before attempting retry or other  
error recovery.  
Program Successful  
3UHOLPLQDU\  
49  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
Appendix C Common Flash Interface Query Structure  
This appendix defines the data structure or “database” returned by the Common Flash Interface  
(CFI) Query command. System software should parse this structure to gain critical information  
such as block size, density, x8/x16, and electrical specifications. Once this information has been  
obtained, the software will know which command sets to use to enable flash writes, block erases,  
and otherwise control the flash component. The Query is part of an overall specification for  
multiple command set and control interface descriptions called Common Flash Interface, or CFI.  
C.1  
Query Structure Output  
The Query “database” allows system software to gain information for controlling the flash  
component. This section describes the device’s CFI-compliant interface that allows the host system  
to access Query data.  
Query data are always presented on the lowest-order data outputs (DQ0-7) only. The numerical  
offset value is the address relative to the maximum bus width supported by the device. On this  
family of devices, the Query table device starting address is a 10h, which is a word address for x16  
devices.  
For a word-wide (x16) device, the first two bytes of the Query structure, “Q” and ”R” in ASCII,  
appear on the low byte at word addresses 10h and 11h. This CFI-compliant device outputs 00H  
data on upper bytes. Thus, the device outputs ASCII “Q” in the low byte (DQ0-7) and 00h in the  
high byte (DQ8-15).  
At Query addresses containing two or more bytes of information, the least significant data byte is  
presented at the lower address, and the most significant data byte is presented at the higher address.  
In all of the following tables, addresses and data are represented in hexadecimal notation, so the  
“h” suffix has been dropped. In addition, since the upper byte of word-wide devices is always  
“00h,” the leading “00” has been dropped from the table notation and only the lower byte value is  
shown. Any x16 device outputs can be assumed to have 00h on the upper byte in this mode.  
Table 12. Summary of Query Structure Output As a Function of Device and Mode  
Hex  
Offset  
ASCII  
Value  
Device  
Code  
10:  
11:  
12:  
51  
52  
59  
“Q”  
“R”  
“Y”  
Device Addresses  
50  
3UHOLPLQDU\  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
Table 13. Example of Query Structure Output of x16 and x8 Devices  
Word Addressing  
Hex Code  
Byte Addressing  
Hex Code  
Offset  
–A  
Value  
Offset  
Value  
A
D
–D  
A –A  
D –D  
7 0  
15  
0
15  
0
7
0
0010h  
0011h  
0012h  
0013h  
0014h  
0015h  
0016h  
0017h  
0018h  
...  
0051  
0052  
0059  
“Q”  
“R”  
10h  
11h  
12h  
13h  
14h  
15h  
16h  
17h  
18h  
...  
51  
52  
“Q”  
“R”  
“Y”  
59  
“Y”  
P_ID  
PrVendor  
ID #  
P_ID  
P_ID  
PrVendor  
ID #  
LO  
LO  
P_ID  
HI  
LO  
P
PrVendor  
TblAdr  
AltVendor  
ID #  
P_ID  
...  
ID #  
LO  
HI  
P
...  
HI  
A_ID  
LO  
A_ID  
...  
HI  
...  
C.2  
Query Structure Overview  
The Query command causes the flash component to display the Common Flash Interface (CFI)  
Query structure or “database.” The structure sub-sections and address locations are summarized  
below.  
Table 14. Query Structure(1)  
Offset  
Sub-Section Name  
Description  
Manufacturer Code  
00h  
01h  
Device Code  
(BA+2)h(2)  
04-0Fh  
10h  
Block Status Register  
Reserved  
Block-Specific Information  
Reserved for Vendor-Specific Information  
Command Set ID and Vendor Data Offset  
Device Timing and Voltage Information  
Flash Device Layout  
CFI Query Identification String  
System Interface Information  
Device Geometry Definition  
1Bh  
27h  
Vendor-Defined Additional Information  
Specific to the Primary Vendor Algorithm  
P(3)  
Primary Intel-Specific Extended Query Table  
NOTES:  
1. Refer to the Query Structure Output section and offset 28h for the detailed definition of offset address as a  
function of device bus width and mode.  
2. BA = The beginning location of a Block Address (e.g., 08000h is the beginning location of block 1 when the  
block size is 32 Kword).  
3. Offset 15 defines “P” which points to the Primary Intel-specific Extended Query Table.  
3UHOLPLQDU\  
51  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
C.3  
Block Lock Status Register  
The Block Status Register indicates whether an erase operation completed successfully or whether  
a given block is locked or can be accessed for flash program/erase operations.  
Block Erase Status (BSR.1) allows system software to determine the success of the last block erase  
operation. BSR.1 can be used just after power-up to verify that the VCC supply was not  
accidentally removed during an erase operation. This bit is only reset by issuing another erase  
operation to the block. The Block Status Register is accessed from word address 02h within each  
block.  
Table 15. Block Status Register  
Offset  
(BA+2)h(1)  
Length  
Description  
Add.  
Value  
1
Block Lock Status Register  
BA+2:  
--00 or --01  
BSR.0 Block Lock Status  
0 = Unlocked  
BA+2:  
(bit 0): 0 or 1  
1 = Locked  
BSR.1 Block Lock-Down Status  
0 = Not locked down  
BA+2:  
(bit 1): 0 or 1  
1 = Locked down  
BSR 2–7: Reserved for future use  
BA+2:  
(bit 2–7): 0  
NOTE:  
1. BA = The beginning location of a Block Address (i.e., 008000h is the beginning location of block 1 in word  
mode.)  
C.4  
CFI Query Identification String  
The Identification String provides verification that the component supports the Common Flash  
Interface specification. It also indicates the specification version and supported vendor-specified  
command set(s).  
Table 16. CFI Identification  
Hex  
Code  
Offset  
Length  
Description  
Add.  
Value  
10  
11:  
12:  
--51  
--52  
--59  
“Q”  
“R”  
“Y”  
10h  
3
Query-unique ASCII string “QRY“  
Primary vendor command set and control interface ID code  
16-bit ID code for vendor-specified algorithms  
13:  
14:  
--03  
--00  
13h  
15h  
17h  
19h  
2
2
2
2
15:  
16:  
--35  
--00  
Extended Query Table primary algorithm address  
Alternate vendor command set and control interface ID code  
0000h means no second vendor-specified algorithm exists  
17:  
18:  
--00  
--00  
Secondary algorithm Extended Query Table address  
0000h means none exists  
19:  
1A:  
--00  
--00  
52  
3UHOLPLQDU\  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
C.5  
System Interface Information  
Table 17. System Interface Information  
Hex  
Code  
Offset  
Length  
Description  
Add.  
Value  
V
V
V
V
logic supply minimum program/erase voltage  
bits 0–3 BCD 100 mV  
bits 4–7 BCD volts  
CC  
1Bh  
1Ch  
1Dh  
1Eh  
1
1B:  
--27  
2.7 V  
logic supply maximum program/erase voltage  
bits 0–3 BCD 100 mV  
bits 4–7 BCD volts  
CC  
1
1
1
1C:  
1D:  
1E:  
--36  
--B4  
--C6  
3.6 V  
11.4 V  
12.6 V  
[programming] supply minimum program/erase voltage  
bits 0–3 BCD 100 mV  
bits 4–7 HEX volts  
PP  
[programming] supply maximum program/erase voltage  
bits 0–3 BCD 100 mV  
bits 4–7 HEX volts  
PP  
1Fh  
20h  
21h  
22h  
23h  
24h  
25h  
26h  
1
1
1
1
1
1
1
1
“n” such that typical single word program time-out =2n µs  
“n” such that typical max. buffer write time-out = 2n µs  
“n” such that typical block erase time-out = 2n ms  
1F:  
20:  
21:  
22:  
23:  
24:  
25:  
26:  
--05  
--00  
--0A  
--00  
--04  
--00  
--03  
--00  
32 µs  
NA  
1 s  
“n” such that typical full chip erase time-out = 2n ms  
NA  
“n” such that maximum word program time-out = 2n times typical  
“n” such that maximum buffer write time-out = 2n times typical  
“n” such that maximum block erase time-out = 2n times typical  
“n” such that maximum chip erase time-out = 2n times typical  
512µs  
NA  
8s  
NA  
3UHOLPLQDU\  
53  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
C.6  
Device Geometry Definition  
Table 18. Device Geometry Definition  
Code  
See table below  
Offset  
Length  
Description  
27h  
1
“n” such that device size = 2n in number of bytes  
27:  
28:  
29:  
Flash device interface:  
x8 async x16 async x8/x16 async  
--01  
--00  
x16  
0
28h  
2
2
28:00,29:00 28:01,29:00 28:02,29:00  
2A:  
2B:  
--00  
--00  
2Ah  
2Ch  
“n” such that maximum number of bytes in write buffer = 2n  
Number of erase block regions within device:  
1. x = 0 means no erase blocking; the device erases in “bulk”  
2. x specifies the number of device or partition regions  
with one or more contiguous same-size erase blocks.  
3. Symmetrically blocked partitions have one blocking region  
4. Partition size = (total blocks) x (individual block size)  
1
2C:  
--02  
2
2D:  
2E:  
2F:  
30:  
Erase Block Region 1 Information  
2Dh  
31h  
4
4
bits 0–15 = y, y+1 = number of identical-size erase blocks  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
31:  
32:  
33:  
34:  
Erase Block Region 2 Information  
bits 0–15 = y, y+1 = number of identical-size erase blocks  
bits 16–31 = z, region erase block(s) size are z x 256 bytes  
Device Geometry Definition  
8 Mbit  
16 Mbit  
32 Mbit  
64 Mbit  
Address  
–B  
–T  
–B  
–T  
–B  
–T  
–B  
–T  
27:  
28:  
29:  
2A:  
2B:  
2C:  
2D:  
2E:  
2F:  
30:  
31:  
32:  
33:  
34:  
--14  
--01  
--00  
--00  
--00  
--02  
--07  
--00  
--20  
--00  
--0E  
--00  
--00  
--01  
--14  
--01  
--00  
--00  
--00  
--02  
--0E  
--00  
--00  
--01  
--07  
--00  
--20  
--00  
--15  
--01  
--00  
--00  
--00  
--02  
--07  
--00  
--20  
--00  
--1E  
--00  
--00  
--01  
--15  
--01  
--00  
--00  
--00  
--02  
--1E  
--00  
--00  
--01  
--07  
--00  
--20  
--00  
--16  
--01  
--00  
--00  
--00  
--02  
--07  
--00  
--20  
--00  
--3E  
--00  
--00  
--01  
--16  
--01  
--00  
--00  
--00  
--02  
--3E  
--00  
--00  
--01  
--07  
--00  
--20  
--00  
--17  
--01  
--00  
--00  
--00  
--02  
--07  
--00  
--20  
--00  
--7E  
--00  
--00  
--01  
--17  
--01  
--00  
--00  
--00  
--02  
--7E  
--00  
--00  
--01  
--07  
--00  
--20  
--00  
54  
3UHOLPLQDU\  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
C.7  
Intel-Specific Extended Query Table  
Certain flash features and commands are optional. The Intel-Specific Extended Query table  
specifies this and other similar types of information.  
Table 19. Primary-Vendor Specific Extended Query  
Offset(1)  
P = 35h  
Description  
(Optional Flash Features and Commands)  
Length  
Address  
Hex Code  
Value  
(P+0)h  
(P+1)h  
(P+2)h  
35:  
36:  
37:  
--50  
--52  
--49  
“P”  
“R”  
“I”  
Primary extended query table  
Unique ASCII string “PRI”  
3
(P+3)h  
(P+4)h  
1
1
Major version number, ASCII  
Minor version number, ASCII  
38:  
39:  
--31  
--30  
“1”  
“0”  
Optional feature and command support (1=yes,  
0=no)  
bits 9–31 are reserved; undefined bits are “0.” If  
bit 31 is “1” then another 31 bit field of optional  
features follows at the end of the bit-30 field.  
3A:  
3B:  
3C:  
3D:  
--66  
--00  
--00  
--00  
(P+5)h  
(P+6)h  
(P+7)h  
(P+8)h  
bit 0 Chip erase supported  
bit 0 = 0  
No  
Yes  
Yes  
No  
bit 1 Suspend erase supported  
bit 2 Suspend program supported  
bit 3 Legacy lock/unlock supported  
bit 4 Queued erase supported  
bit 5 Instant individual block locking supported  
bit 6 Protection bits supported  
bit 1 = 1  
bit 2 = 1  
bit 3 = 0  
bit 4 = 0  
bit 5 = 1  
bit 6 = 1  
bit 7 = 0  
bit 8 = 0  
4
No  
Yes  
Yes  
No  
bit 7 Page mode read supported  
bit 8 Synchronous read supported  
No  
Supported functions after suspend: Read Array,  
Status, Query  
Other supported operations are:  
bits 1–7 reserved; undefined bits are “0”  
3E:  
--01  
(P+9)h  
1
bit 0 Program supported after erase suspend  
bit 0 = 1  
Yes  
3F:  
40:  
--03  
--00  
Block status register mask  
(P+A)h  
(P+B)h  
bits 2–15 are Reserved; undefined bits are “0”  
bit 0 Block Lock-Bit Status Register active  
bit 1 Block Lock-Down Bit Status active  
2
bit 0 = 1  
bit 1 = 1  
Yes  
Yes  
V
logic supply highest performance program/  
CC  
erase voltage  
bits 0–3 BCD value in 100 mV  
bits 4–7 BCD value in volts  
(P+C)h  
(P+D)h  
1
1
41:  
42:  
--33  
3.3 V  
V
optimum program/erase supply voltage  
PP  
bits 0–3 BCD value in 100 mV  
bits 4–7 HEX value in volts  
--C0  
12.0 V  
3UHOLPLQDU\  
55  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
Table 20. Protection Register Information  
Offset(1)  
P = 35h  
Description  
(Optional Flash Features and Commands)  
Hex  
Code  
Length  
Address  
Value  
Number of Protection register fields in JEDEC ID space.  
“00h,” indicates that 256 protection bytes are available  
(P+E)h  
1
43:  
--01  
01  
(P+F)h  
(P+10)h  
(P+11)h  
44:  
45:  
46:  
--80  
--00  
--03  
80h  
00h  
8 byte  
Protection Field 1: Protection Description  
This field describes user-available One Time Programmable (OTP)  
Protection register bytes. Some are pre-programmed with device-  
unique serial numbers. Others are user programmable. Bits 0–15  
point to the Protection register Lock byte, the section’s first byte.  
The following bytes are factory pre-programmed and user-  
programmable.  
4
(P+12)h  
(P+13)h  
47:  
48:  
--03  
8 byte  
bits 0–7 = Lock/bytes JEDEC-plane physical low address  
bits 8–15 = Lock/bytes JEDEC -plane physical high address  
bits 16–23 = “n” such that 2n = factory pre-programmed bytes  
bits 24–31 = “n” such that 2n = user programmable bytes  
Reserved for future use  
NOTE:  
1. The variable P is a pointer which is defined at CFI offset 15h.  
56  
3UHOLPLQDU\  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
Appendix D Architecture Block Diagram  
DQ0-DQ15  
VCCQ  
Output Buffer  
Input Buffer  
Identifier  
Register  
Status  
Register  
I/O Logic  
CE#  
WE#  
OE#  
RP#  
Command  
User  
Interface  
Power  
Reduction  
Control  
Data  
Comparator  
WP#  
A0-A19  
Y-Decoder  
Y-Gating/Sensing  
Write State  
Machine  
Program/Erase  
Voltage Switch  
Input Buffer  
VPP  
Address  
Latch  
X-Decoder  
VCC  
GND  
Address  
Counter  
3UHOLPLQDU\  
57  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
Appendix E Word-Wide Memory Map Diagrams  
8-Mbit Word-Wide Memory Addressing  
Top Boot  
Bottom Boot  
Size  
(KW)  
Size  
(KW)  
8 Mbit  
8 Mbit  
4
7F000-7FFFF  
7E000-7EFFF  
7D000-7DFFF  
7C000-7CFFF  
7B000-7BFFF  
7A000-7AFFF  
79000-79FFF  
78000-78FFF  
70000-77FFF  
68000-6FFFF  
60000-67FFF  
58000-5FFFF  
50000-57FFF  
48000-4FFFF  
40000-47FFF  
38000-3FFFF  
30000-37FFF  
28000-2FFFF  
20000-27FFF  
18000-1FFFF  
10000-17FFF  
08000-0FFFF  
00000-07FFF  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
78000-7FFFF  
70000-77FFF  
68000-6FFFF  
60000-67FFF  
58000-5FFFF  
50000-57FFF  
48000-4FFFF  
40000-47FFF  
38000-3FFFF  
30000-37FFF  
28000-2FFFF  
20000-27FFF  
18000-1FFFF  
10000-17FFF  
08000-0FFFF  
07000-07FFF  
06000-06FFF  
05000-05FFF  
04000-04FFF  
03000-03FFF  
02000-02FFF  
01000-01FFF  
00000-00FFF  
4
4
4
4
4
4
4
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
58  
3UHOLPLQDU\  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
16-Mbit, 32-Mbit, and 64-Mbit Word-Wide Memory Addressing  
Top Boot Bottom Boot  
Size  
(KW)  
Size  
(KW)  
16 Mbit  
32 Mbit  
64 Mbit  
16 Mbit  
32 Mbit  
64 Mbit  
4
FF000-FFFFF  
FE000-FEFFF  
FD000-FDFFF  
FC000-FCFFF  
FB000-FBFFF  
FA000-FAFFF  
F9000-F9FFF  
F8000-F8FFF  
F0000-F7FFF  
E8000-EFFFF  
E0000-E7FFF  
D8000-DFFFF  
D0000-D7FFF  
C8000-CFFFF  
C0000-C7FFF  
B8000-BFFFF  
B0000-B7FFF  
A8000-AFFFF  
A0000-A7FFF  
98000-9FFFF  
90000-97FFF  
88000-8FFFF  
80000-87FFF  
78000-7FFFF  
70000-77FFF  
68000-6FFFF  
60000-67FFF  
58000-5FFFF  
50000-57FFF  
48000-4FFFF  
40000-47FFF  
38000-3FFFF  
30000-37FFF  
28000-2FFFF  
20000-27FFF  
18000-1FFFF  
10000-17FFF  
08000-0FFFF  
00000-07FFF  
1FF000-1FFFFF  
1FE000-1FEFFF  
1FD000-1FDFFF  
1FC000-1FCFFF  
1FB000-1FBFFF  
1FA000-1FAFFF  
1F9000-1F9FFF  
1F8000-1F8FFF  
1F0000-1F7FFF  
1E8000-1EFFFF  
1E0000-1E7FFF  
1D8000-1DFFFF  
1D0000-1D7FFF  
1C8000-1CFFFF  
1C0000-1C7FFF  
1B8000-1BFFFF  
1B0000-1B7FFF  
1A8000-1AFFFF  
1A0000-1A7FFF  
198000-19FFFF  
190000-197FFF  
188000-18FFFF  
180000-187FFF  
178000-17FFFF  
170000-177FFF  
168000-16FFFF  
160000-167FFF  
158000-15FFFF  
150000-157FFF  
148000-14FFFF  
140000-147FFF  
138000-13FFFF  
130000-137FFF  
128000-12FFFF  
120000-127FFF  
118000-11FFFF  
110000-117FFF  
108000-10FFFF  
100000-107FFF  
0F8000-0FFFFF  
0F0000-0F7FFF  
0E8000-0EFFFF  
0E0000-0E7FFF  
0D8000-0DFFFF  
0D0000-0D7FFF  
0C8000-0CFFFF  
0C0000-0C7FFF  
0B8000-0BFFFF  
0B0000-0B7FFF  
0A8000-0AFFFF  
3FF000-3FFFFF  
3FE000-3FEFFF  
3FD000-3FDFFF  
3FC000-3FCFFF  
3FB000-3FBFFF  
3FA000-3FAFFF  
3F9000-3F9FFF  
3F8000-3F8FFF  
3F0000-3F7FFF  
3E8000-3EFFFF  
3E0000-3E7FFF  
3D8000-3DFFFF  
3D0000-3D7FFF  
3C8000-3CFFFF  
3C0000-3C7FFF  
3B8000-3BFFFF  
3B0000-3B7FFF  
3A8000-3AFFFF  
3A0000-3A7FFF  
398000-39FFFF  
390000-397FFF  
388000-38FFFF  
380000-387FFF  
378000-37FFFF  
370000-377FFF  
368000-36FFFF  
360000-367FFF  
358000-35FFFF  
350000-357FFF  
348000-34FFFF  
340000-347FFF  
338000-33FFFF  
330000-337FFF  
328000-32FFFF  
320000-327FFF  
318000-31FFFF  
310000-317FFF  
308000-30FFFF  
300000-307FFF  
2F8000-2FFFFF  
2F0000-2F7FFF  
2E8000-2EFFFF  
2E0000-2E7FFF  
2D8000-2DFFFF  
2D0000-2D7FFF  
2C8000-2CFFFF  
2C0000-2C7FFF  
2B8000-2BFFFF  
2B0000-2B7FFF  
2A8000-2AFFFF  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
3F8000-3FFFFF  
3F0000-3F7FFF  
3E8000-3EFFFF  
3E0000-3E7FFF  
3D8000-3DFFFF  
3D0000-3D7FFF  
3C8000-3CFFFF  
3C0000-3C7FFF  
3B8000-3BFFFF  
3B0000-3B7FFF  
3A8000-3AFFFF  
3A0000-3A7FFF  
398000-39FFFF  
390000-397FFF  
388000-38FFFF  
380000-387FFF  
378000-37FFFF  
370000-377FFF  
368000-36FFFF  
360000-367FFF  
358000-35FFFF  
350000-357FFF  
348000-34FFFF  
340000-347FFF  
338000-33FFFF  
330000-337FFF  
328000-32FFFF  
320000-327FFF  
318000-31FFFF  
310000-317FFF  
308000-30FFFF  
300000-307FFF  
2F8000-2FFFFF  
2F0000-2F7FFF  
2E8000-2EFFFF  
2E0000-2E7FFF  
2D8000-2DFFFF  
2D0000-2D7FFF  
2C8000-2CFFFF  
2C0000-2C7FFF  
2B8000-2BFFFF  
2B0000-2B7FFF  
2A8000-2AFFFF  
2A0000-2A7FFF  
298000-29FFFF  
290000-297FFF  
288000-28FFFF  
280000-287FFF  
278000-27FFFF  
270000-277FFF  
4
4
4
4
4
4
4
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
This column continues on next page  
This column continues on next page  
3UHOLPLQDU\  
59  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
16-Mbit, 32-Mbit, and 64-Mbit Word-Wide Memory Addressing  
Top Boot Bottom Boot  
Size  
(KW)  
Size  
(KW)  
16 Mbit  
32 Mbit  
64 Mbit  
16 Mbit  
32 Mbit  
64 Mbit  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
0A0000-0A7FFF  
098000-09FFFF  
090000-097FFF  
088000-08FFFF  
080000-087FFF  
078000-07FFFF  
070000-077FFF  
068000-06FFFF  
060000-067FFF  
058000-05FFFF  
050000-057FFF  
048000-04FFFF  
040000-047FFF  
038000-03FFFF  
030000-037FFF  
028000-02FFFF  
020000-027FFF  
018000-01FFFF  
010000-017FFF  
008000-00FFFF  
000000-007FFF  
2A0000-2A7FFF  
298000-29FFFF  
290000-297FFF  
288000-28FFFF  
280000-287FFF  
278000-27FFFF  
270000-277FFF  
268000-26FFFF  
260000-267FFF  
258000-25FFFF  
250000-257FFF  
248000-24FFFF  
240000-247FFF  
238000-23FFFF  
230000-237FFF  
228000-22FFFF  
220000-227FFF  
218000-21FFFF  
210000-217FFF  
208000-21FFFF  
200000-207FFF  
1F8000-1FFFFF  
1F0000-1F7FFF  
1E8000-1EFFFF  
1E0000-1E7FFF  
1D8000-1DFFFF  
1D0000-1D7FFF  
1C8000-1CFFFF  
1C0000-1C7FFF  
1B8000-1BFFFF  
1B0000-1B7FFF  
1A8000-1AFFFF  
1A0000-1A7FFF  
198000-19FFFF  
190000-197FFF  
188000-18FFFF  
180000-187FFF  
178000-17FFFF  
170000-177FFF  
168000-16FFFF  
160000-167FFF  
158000-15FFFF  
150000-157FFF  
148000-14FFFF  
140000-147FFF  
138000-13FFFF  
130000-137FFF  
128000-12FFFF  
120000-127FFF  
118000-11FFFF  
110000-117FFF  
108000-10FFFF  
100000-107FFF  
0F8000-0FFFFF  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
268000-26FFFF  
260000-267FFF  
258000-25FFFF  
250000-257FFF  
248000-24FFFF  
240000-247FFF  
238000-23FFFF  
230000-237FFF  
228000-22FFFF  
220000-227FFF  
218000-21FFFF  
210000-217FFF  
208000-20FFFF  
200000-207FFF  
1F8000-1FFFFF  
1F0000-1F7FFF  
1E8000-1EFFFF  
1E0000-1E7FFF  
1D8000-1DFFFF  
1D0000-1D7FFF  
1C8000-1CFFFF  
1C0000-1C7FFF  
1B8000-1BFFFF  
1B0000-1B7FFF  
1A8000-1AFFFF  
1A0000-1A7FFF  
198000-19FFFF  
190000-197FFF  
188000-18FFFF  
180000-187FFF  
178000-17FFFF  
170000-177FFF  
168000-16FFFF  
160000-167FFF  
158000-15FFFF  
150000-157FFF  
148000-14FFFF  
140000-147FFF  
138000-13FFFF  
130000-137FFF  
128000-12FFFF  
120000-127FFF  
118000-11FFFF  
110000-117FFF  
108000-10FFFF  
100000-107FFF  
F8000-FFFFF  
1F8000-1FFFFF  
1F0000-1F7FFF  
1E8000-1EFFFF  
1E0000-1E7FFF  
1D8000-1DFFFF  
1D0000-1D7FFF  
1C8000-1CFFFF  
1C0000-1C7FFF  
1B8000-1BFFFF  
1B0000-1B7FFF  
1A8000-1AFFFF  
1A0000-1A7FFF  
198000-19FFFF  
190000-197FFF  
188000-18FFFF  
180000-187FFF  
178000-17FFFF  
170000-177FFF  
168000-16FFFF  
160000-167FFF  
158000-15FFFF  
150000-157FFF  
148000-14FFFF  
140000-147FFF  
138000-13FFFF  
130000-137FFF  
128000-12FFFF  
120000-127FFF  
118000-11FFFF  
110000-117FFF  
108000-10FFFF  
100000-107FFF  
F8000-FFFFF  
F8000-FFFFF  
F0000-F7FFF  
E8000-EFFFF  
E0000-E7FFF  
D8000-DFFFF  
D0000-D7FFF  
C8000-CFFFF  
C0000-C7FFF  
F0000-F7FFF  
F0000-F7FFF  
E8000-EFFFF  
E8000-EFFFF  
E0000-E7FFF  
E0000-E7FFF  
D8000-DFFFF  
D0000-D7FFF  
D8000-DFFFF  
D0000-D7FFF  
C8000-CFFFF  
C0000-C7FFF  
C8000-CFFFF  
C0000-C7FFF  
This column continues on next page  
This column continues on next page  
60  
3UHOLPLQDU\  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
16-Mbit, 32-Mbit, and 64-Mbit Word-Wide Memory Addressing  
Top Boot Bottom Boot  
Size  
(KW)  
Size  
(KW)  
16 Mbit  
32 Mbit  
64 Mbit  
16 Mbit  
32 Mbit  
64 Mbit  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
0F0000-0F7FFF  
0E8000-0EFFFF  
0E0000-0E7FFF  
0D8000-0DFFFF  
0D0000-0D7FFF  
0C8000-0CFFFF  
0C0000-0C7FFF  
0B8000-0BFFFF  
0B0000-0B7FFF  
0A8000-0AFFFF  
0A0000-0A7FFF  
098000-09FFFF  
090000-097FFF  
088000-08FFFF  
080000-087FFF  
078000-07FFFF  
070000-077FFF  
068000-06FFFF  
060000-067FFF  
058000-05FFFF  
050000-057FFF  
048000-04FFFF  
040000-047FFF  
038000-03FFFF  
030000-037FFF  
028000-02FFFF  
020000-027FFF  
018000-01FFFF  
010000-017FFF  
008000-00FFFF  
000000-007FFF  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
32  
4
B8000-BFFFF  
B0000-B7FFF  
A8000-AFFFF  
A0000-A7FFF  
98000-9FFFF  
90000-97FFF  
88000-8FFFF  
80000-87FFF  
78000-7FFFF  
70000-77FFF  
68000-6FFFF  
60000-67FFF  
58000-5FFFF  
50000-57FFF  
48000-4FFFF  
40000-47FFF  
38000-3FFFF  
30000-37FFF  
28000-2FFFF  
20000-27FFF  
18000-1FFFF  
10000-17FFF  
08000-0FFFF  
07000-07FFF  
06000-06FFF  
05000-05FFF  
04000-04FFF  
03000-03FFF  
02000-02FFF  
01000-01FFF  
00000-00FFF  
B8000-BFFFF  
B0000-B7FFF  
A8000-AFFFF  
A0000-A7FFF  
98000-9FFFF  
90000-97FFF  
88000-8FFFF  
80000-87FFF  
78000-7FFFF  
70000-77FFF  
68000-6FFFF  
60000-67FFF  
58000-5FFFF  
50000-57FFF  
48000-4FFFF  
40000-47FFF  
38000-3FFFF  
30000-37FFF  
28000-2FFFF  
20000-27FFF  
18000-1FFFF  
10000-17FFF  
08000-0FFFF  
07000-07FFF  
06000-06FFF  
05000-05FFF  
04000-04FFF  
03000-03FFF  
02000-02FFF  
01000-01FFF  
00000-00FFF  
B8000-BFFFF  
B0000-B7FFF  
A8000-AFFFF  
A0000-A7FFF  
98000-9FFFF  
90000-97FFF  
88000-8FFFF  
80000-87FFF  
78000-7FFFF  
70000-77FFF  
68000-6FFFF  
60000-67FFF  
58000-5FFFF  
50000-57FFF  
48000-4FFFF  
40000-47FFF  
38000-3FFFF  
30000-37FFF  
28000-2FFFF  
20000-27FFF  
18000-1FFFF  
10000-17FFF  
08000-0FFFF  
07000-07FFF  
06000-06FFF  
05000-05FFF  
04000-04FFF  
03000-03FFF  
02000-02FFF  
01000-01FFF  
00000-00FFF  
4
4
4
4
4
4
4
3UHOLPLQDU\  
61  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
Appendix F Device ID Table  
Read Configuration Addresses and Data  
Item  
Address  
Data  
Manufacturer Code  
Device Code  
x16  
00000  
0089  
8-Mbit x 16-T  
x16  
x16  
x16  
x16  
x16  
x16  
x16  
x16  
00001  
00001  
00001  
00001  
00001  
00001  
00001  
00001  
88C0  
88C1  
88C2  
88C3  
88C4  
88C5  
88CC  
88CD  
8-Mbit x 16-B  
16-Mbit x 16-T  
16-Mbit x 16-B  
32-Mbit x 16-T  
32-Mbit x 16-B  
64-Mbit x 16-T  
64-Mbit x 16-B  
NOTE: Other locations within the configuration address space are reserved by Intel for future use.  
62  
3UHOLPLQDU\  
28F800C3, 28F160C3, 28F320C3, 28F640C3  
Appendix G Protection Register Addressing  
Word-Wide Protection Register Addressing  
Word  
Use  
A7  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
LOCK  
Both  
Factory  
Factory  
Factory  
Factory  
User  
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
1
1
1
1
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
0
1
2
3
4
5
6
7
User  
User  
User  
NOTE: All address lines not specified in the above table must be 0 when accessing the Protection Register,  
i.e., A A = 0.  
21–  
8
3UHOLPLQDU\  
63