欢迎访问ic37.com |
会员登录 免费注册
发布采购

MP1470BGJ 参数 Datasheet PDF下载

MP1470BGJ图片预览
型号: MP1470BGJ
PDF下载: 下载PDF文件 查看货源
内容描述: [High Efficiency, 2A, 16V, 500kHz Synchronous, Step-Down Converter]
分类和应用: 开关光电二极管输出元件
文件页数/大小: 18 页 / 418 K
品牌: MPS [ MONOLITHIC POWER SYSTEMS ]
 浏览型号MP1470BGJ的Datasheet PDF文件第9页浏览型号MP1470BGJ的Datasheet PDF文件第10页浏览型号MP1470BGJ的Datasheet PDF文件第11页浏览型号MP1470BGJ的Datasheet PDF文件第12页浏览型号MP1470BGJ的Datasheet PDF文件第14页浏览型号MP1470BGJ的Datasheet PDF文件第15页浏览型号MP1470BGJ的Datasheet PDF文件第16页浏览型号MP1470BGJ的Datasheet PDF文件第17页  
MP1470B – SYNCHRONOUS, STEP-DOWN CONVERTER WITH INTERNAL MOSFETS  
APPLICATION INFORMATION  
Setting the Output Voltage  
peak current is calculated with Equation (3):  
The external resistor divider sets the output  
voltage. Also, the feedback resistor (R1) sets  
the feedback loop bandwidth through the  
internal compensation capacitor (see the  
Typical Application circuits). Refer to Table 1 to  
choose R1 and R2 using Equation (1):  
R1  
ΔIL  
IL(MAX) = ILOAD  
+
(3)  
2
Under light-load conditions (below 100mA), use  
a larger inductor to improve efficiency.  
Selecting the Input Capacitor  
The input current to the step-down converter is  
discontinuous, and therefore requires  
capacitor to both supply the AC current to the  
step-down converter and maintain the DC input  
voltage. For best performance, use low ESR  
capacitors, such as ceramic capacitors with  
X5R or X7R dielectrics, and small temperature  
coefficients. A 22µF capacitor is sufficient for  
most applications.  
R2 =  
(1)  
V
a
OUT  
1  
0.8V  
Use a T-type network (see Figure 4).  
The input capacitor (C1) requires an adequate  
ripple-current rating because it absorbs the  
input switching. Estimate the RMS current in  
the input capacitor with Equation (4):  
Figure 4: T-Type Network  
Table 1 lists the recommended T-type resistor  
values for common output voltages.  
Table 1: Resistor Selection for Common Output  
Voltages  
VOUT  
VIN  
VOUT  
VIN  
IC1 = ILOAD  
×
× 1−  
(4)  
VOUT (V)  
1.05  
1.2  
R1 (k)  
R2 (k)  
Rt (k)  
The worst-case condition occurs at VIN = 2VOUT  
as shown in Equation (5):  
,
10 (1%)  
32.4 (1%) 300 (1%)  
20.5 (1%) 41.2 (1%) 249 (1%)  
40.2 (1%) 32.4 (1%) 120 (1%)  
40.2 (1%) 19.1 (1%) 100 (1%)  
ILOAD  
1.8  
IC1  
=
(5)  
2
2.5  
For simplification, choose an input capacitor  
with an RMS current rating greater than half the  
maximum load current.  
3.3  
40.2 (1%)  
13 (1%)  
75 (1%)  
5
40.2 (1%) 7.68 (1%) 75 (1%)  
Selecting the Inductor  
The input capacitor can be electrolytic, tantalum,  
or ceramic. Place a small, high-quality ceramic  
capacitor (0.1μF) as close to the IC as possible  
when using electrolytic or tantalum capacitors.  
When using ceramic capacitors, make sure that  
they have enough capacitance to provide  
sufficient charge to prevent excessive input  
voltage ripple. Estimate the input voltage ripple  
caused by the capacitance with Equation (6):  
Use a 1µH to 10µH inductor with a DC current  
rating at least 25% higher than the maximum  
load current for most applications. For highest  
efficiency, select an inductor with a DC  
resistance less than 15m. For most designs,  
derive the inductance value from Equation (2):  
VOUT ×(V VOUT  
)
IN  
(2)  
L1 =  
V × ΔIL × fOSC  
IN  
ILOAD  
VOUT  
VOUT  
(6)  
ΔV  
=
×
× 1−  
IN  
Where ΔIL is the inductor ripple current. Choose  
an inductor current approximately 30% of the  
maximum load current. The maximum inductor  
fS ×C1  
V
IN  
V
IN  
Selecting the Output Capacitor  
The output capacitor (C2) maintains the DC  
output voltage. Use ceramic, tantalum, or low  
MP1470B Rev. 1.0  
8/25/2015  
www.MonolithicPower.com  
MPS Proprietary Information. Patent Protected. Unauthorized Photocopy and Duplication Prohibited.  
© 2015 MPS. All Rights Reserved.  
13