欢迎访问ic37.com |
会员登录 免费注册
发布采购

20BQ030 参数 Datasheet PDF下载

20BQ030图片预览
型号: 20BQ030
PDF下载: 下载PDF文件 查看货源
内容描述: 2A , 380千赫降压转换器 [2A, 380 KHz Step-Down Converter]
分类和应用: 转换器二极管光电二极管
文件页数/大小: 10 页 / 249 K
品牌: MPS [ MONOLITHIC POWER SYSTEMS ]
 浏览型号20BQ030的Datasheet PDF文件第2页浏览型号20BQ030的Datasheet PDF文件第3页浏览型号20BQ030的Datasheet PDF文件第4页浏览型号20BQ030的Datasheet PDF文件第5页浏览型号20BQ030的Datasheet PDF文件第6页浏览型号20BQ030的Datasheet PDF文件第8页浏览型号20BQ030的Datasheet PDF文件第9页浏览型号20BQ030的Datasheet PDF文件第10页  
TM  
MP1580 – 2A, 380KHz STEP-DOWN CONVERTER  
Compensation  
In this case, the switching frequency is 380KHz,  
so use a crossover frequency, fC, of 40KHz.  
Lower crossover frequencies result in slower  
response and worse transient load recovery.  
Higher crossover frequencies can result in  
instability.  
The system stability is controlled through the  
COMP pin. COMP is the output of the internal  
transconductance error amplifier. A series  
capacitor-resistor combination sets a pole-zero  
combination to control the characteristics of the  
control system.  
Choosing the Compensation Components  
The values of the compensation components  
given in Table 4 yield a stable control loop for  
the output voltage and capacitor given.  
The DC loop gain is:  
VFB  
AVDC = RLOAD × GCS × AVEA  
×
VOUT  
Table 4—Compensation Values for Typical  
Output Voltage/Capacitor Combinations  
Where AVEA is the transconductance error  
amplifier voltage gain, 400 V/V, GCS is the  
current sense gain, (roughly the output current  
divided by the voltage at COMP), 1.95 A/V and  
RLOAD is the load resistance (VOUT / IOUT where  
VOUT  
2.5V 22µF Ceramic 7.5k2.2nF None  
3.3V 22µF Ceramic 10k2nF None  
15k1.2nF None  
33k1nF None  
200k1nF 100pF  
C2  
R3  
C3  
C6  
I
OUT is the output load current).  
5V  
22µF Ceramic  
22µF Ceramic  
The system has 2 poles of importance, one is  
due to the compensation capacitor (C3), and  
the other is due to the output capacitor (C2).  
These are:  
12V  
560µF/6.3V  
(30mESR)  
2.5V  
3.3V  
5V  
560µF/6.3V  
(30mESR)  
200k1nF  
250k1nF  
250k1nF  
82pF  
56pF  
27pF  
GEA  
fP1  
=
2π× C3× AVEA  
470µF/10V  
(30mESR)  
Where P1 is the first pole and GEA is the error  
amplifier transconductance (770µA/V).  
220µF/25V  
(30mESR)  
12V  
and  
To optimize the compensation components for  
conditions not listed in Table 4, use the  
following procedure:  
1
2π × C2× RLOAD  
fP2  
=
Choose the compensation resistor to set the  
desired crossover frequency. Determine the  
value by the following equation:  
The system has one zero of importance, due to  
the compensation capacitor (C3) and the  
compensation resistor (R3). The zero is:  
2π × C2× fC VOUT  
1
R3 =  
×
fZ1  
=
GEA × GCS  
VFB  
2π × C3×R3  
If a large value capacitor (C2) with relatively  
high equivalent-series-resistance (ESR) is  
used, the zero due to the capacitance and ESR  
of the output capacitor can be compensated by  
a third pole set by R3 and C6. The pole is:  
Putting in the known constants and setting the  
crossover frequency to the desired 40KHz:  
R3 1.37 ×108 × C2× VOUT  
Choose the compensation capacitor to set the  
zero below ¼ of the crossover frequency.  
Determine the value by the following equation:  
1
fP3  
=
2π × C6 × R3  
0.22 × C2 × VOUT  
The system crossover frequency (the frequency  
where the loop gain drops to 1, or 0dB) is  
important. A good rule of thumb is to set the  
crossover frequency to approximately 1/10 of  
the switching frequency.  
C3 >  
R3  
MP1580 Rev. 3.0  
12/5/2005  
www.MonolithicPower.com  
MPS Proprietary Information. Unauthorized Photocopy and Duplication Prohibited.  
© 2005 MPS. All Rights Reserved.  
7