PIC18F2420/2520/4420/4520
16.4.2
PWM DUTY CYCLE
EQUATION 16-3:
The PWM duty cycle is specified by writing to the
CCPR1L register and to the CCP1CON<5:4> bits. Up
to 10-bit resolution is available. The CCPR1L contains
the eight MSbs and the CCP1CON<5:4> bits contain
the two LSbs. This 10-bit value is represented by
CCPR1L:CCP1CON<5:4>. The PWM duty cycle is
calculated by the following equation.
FOSC
FPWM
log
(
)
bits
PWM Resolution (max) =
log(2)
Note:
If the PWM duty cycle value is longer than
the PWM period, the CCP1 pin will not be
cleared.
EQUATION 16-2:
PWM Duty Cycle = (CCPR1L:CCP1CON<5:4>) •
TOSC • (TMR2 Prescale Value)
16.4.3
PWM OUTPUT CONFIGURATIONS
The P1M<1:0> bits in the CCP1CON register allow one
of four configurations:
CCPR1L and CCP1CON<5:4> can be written to at any
time, but the duty cycle value is not copied into
CCPR1H until a match between PR2 and TMR2 occurs
(i.e., the period is complete). In PWM mode, CCPR1H
is a read-only register.
• Single Output
• Half-Bridge Output
• Full-Bridge Output, Forward mode
• Full-Bridge Output, Reverse mode
The CCPR1H register and a 2-bit internal latch are
used to double-buffer the PWM duty cycle. This
double-buffering is essential for glitchless PWM opera-
tion. When the CCPR1H and 2-bit latch match TMR2,
concatenated with an internal 2-bit Q clock or two bits
of the TMR2 prescaler, the CCP1 pin is cleared. The
maximum PWM resolution (bits) for a given PWM
frequency is given by the following equation.
The Single Output mode is the standard PWM mode
discussed in Section 16.4 “Enhanced PWM Mode”.
The Half-Bridge and Full-Bridge Output modes are
covered in detail in the sections that follow.
The general relationship of the outputs in all
configurations is summarized in Figure 16-2 and
Figure 16-3.
TABLE 16-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS AT 40 MHz
PWM Frequency
2.44 kHz
9.77 kHz
39.06 kHz 156.25 kHz 312.50 kHz 416.67 kHz
Timer Prescaler (1, 4, 16)
PR2 Value
16
FFh
10
4
1
1
3Fh
8
1
1Fh
7
1
FFh
10
FFh
10
17h
6.58
Maximum Resolution (bits)
DS39631E-page 150
© 2008 Microchip Technology Inc.