PIC18F2420/2520/4420/4520
The PLUSW register can be used to implement a form
of Indexed Addressing in the data memory space. By
manipulating the value in the W register, users can
reach addresses that are fixed offsets from pointer
addresses. In some applications, this can be used to
implement some powerful program control structure,
such as software stacks, inside of data memory.
5.5.1
INDEXED ADDRESSING WITH
LITERAL OFFSET
Enabling the PIC18 extended instruction set changes
the behavior of Indirect Addressing using the FSR2
register pair within Access RAM. Under the proper
conditions, instructions that use the Access Bank – that
is, most bit-oriented and byte-oriented instructions –
can invoke a form of Indexed Addressing using an
offset specified in the instruction. This special address-
ing mode is known as Indexed Addressing with Literal
Offset, or Indexed Literal Offset mode.
5.4.3.3
Operations by FSRs on FSRs
Indirect Addressing operations that target other FSRs
or virtual registers represent special cases. For
example, using an FSR to point to one of the virtual
registers will not result in successful operations. As a
specific case, assume that FSR0H:FSR0L contains
FE7h, the address of INDF1. Attempts to read the
value of the INDF1 using INDF0 as an operand will
return 00h. Attempts to write to INDF1 using INDF0 as
the operand will result in a NOP.
When using the extended instruction set, this
addressing mode requires the following:
• The use of the Access Bank is forced (‘a’ = 0) and
• The file address argument is less than or equal to
5Fh.
Under these conditions, the file address of the instruc-
tion is not interpreted as the lower byte of an address
(used with the BSR in direct addressing), or as an 8-bit
address in the Access Bank. Instead, the value is
interpreted as an offset value to an Address Pointer,
specified by FSR2. The offset and the contents of
FSR2 are added to obtain the target address of the
operation.
On the other hand, using the virtual registers to write to
an FSR pair may not occur as planned. In these cases,
the value will be written to the FSR pair but without any
incrementing or decrementing. Thus, writing to INDF2
or POSTDEC2 will write the same value to the
FSR2H:FSR2L.
Since the FSRs are physical registers mapped in the
SFR space, they can be manipulated through all direct
operations. Users should proceed cautiously when
working on these registers, particularly if their code
uses indirect addressing.
5.5.2
INSTRUCTIONS AFFECTED BY
INDEXED LITERAL OFFSET MODE
Any of the core PIC18 instructions that can use Direct
Addressing are potentially affected by the Indexed
Literal Offset Addressing mode. This includes all
byte-oriented and bit-oriented instructions, or almost
one-half of the standard PIC18 instruction set.
Instructions that only use Inherent or Literal Addressing
modes are unaffected.
Similarly, operations by Indirect Addressing are gener-
ally permitted on all other SFRs. Users should exercise
the appropriate caution that they do not inadvertently
change settings that might affect the operation of the
device.
Additionally, byte-oriented and bit-oriented instructions
are not affected if they do not use the Access Bank
(Access RAM bit is ‘1’), or include a file address of 60h
or above. Instructions meeting these criteria will
continue to execute as before. A comparison of the dif-
ferent possible addressing modes when the extended
instruction set is enabled in shown in Figure 5-9.
5.5
Data Memory and the Extended
Instruction Set
Enabling the PIC18 extended instruction set (XINST
Configuration bit = 1) significantly changes certain
aspects of data memory and its addressing. Specifi-
cally, the use of the Access Bank for many of the core
PIC18 instructions is different; this is due to the
introduction of a new addressing mode for the data
memory space.
Those who desire to use byte-oriented or bit-oriented
instructions in the Indexed Literal Offset mode should
note the changes to assembler syntax for this mode.
This is described in more detail in Section 24.2.1
“Extended Instruction Syntax”.
What does not change is just as important. The size of
the data memory space is unchanged, as well as its
linear addressing. The SFR map remains the same.
Core PIC18 instructions can still operate in both Direct
and Indirect Addressing mode; inherent and literal
instructions do not change at all. Indirect Addressing
with FSR0 and FSR1 also remains unchanged.
DS39631E-page 70
© 2008 Microchip Technology Inc.