欢迎访问ic37.com |
会员登录 免费注册
发布采购

PIC18F2320-I/SP 参数 Datasheet PDF下载

PIC18F2320-I/SP图片预览
型号: PIC18F2320-I/SP
PDF下载: 下载PDF文件 查看货源
内容描述: 28 /40/ 44引脚高性能,增强型闪存微控制器与10位A / D和纳瓦技术 [28/40/44-Pin High-Performance, Enhanced Flash Microcontrollers with 10-Bit A/D and nanoWatt Technology]
分类和应用: 闪存微控制器和处理器外围集成电路光电二极管PC时钟
文件页数/大小: 388 页 / 6899 K
品牌: MICROCHIP [ MICROCHIP ]
 浏览型号PIC18F2320-I/SP的Datasheet PDF文件第196页浏览型号PIC18F2320-I/SP的Datasheet PDF文件第197页浏览型号PIC18F2320-I/SP的Datasheet PDF文件第198页浏览型号PIC18F2320-I/SP的Datasheet PDF文件第199页浏览型号PIC18F2320-I/SP的Datasheet PDF文件第201页浏览型号PIC18F2320-I/SP的Datasheet PDF文件第202页浏览型号PIC18F2320-I/SP的Datasheet PDF文件第203页浏览型号PIC18F2320-I/SP的Datasheet PDF文件第204页  
PIC18F2220/2320/4220/4320  
It may be advantageous to use the high baud rate  
18.2 USART Baud Rate Generator (BRG)  
(BRGH = 1), even for slower baud clocks, because the  
FOSC/(16 (X + 1)) equation can reduce the baud rate  
error in some cases.  
The BRG supports both the Asynchronous and  
Synchronous modes of the USART. It is a dedicated  
8-bit Baud Rate Generator. The SPBRG register  
controls the period of a free-running 8-bit timer. In  
Asynchronous mode, bit BRGH (TXSTA<2>) also con-  
trols the baud rate. In Synchronous mode, bit BRGH is  
ignored. Table 18-1 shows the formula for computation  
of the baud rate for different USART modes which only  
apply in Master mode (internal clock).  
Writing a new value to the SPBRG register causes the  
BRG timer to be reset (or cleared). This ensures the  
BRG does not wait for a timer overflow before  
outputting the new baud rate.  
18.2.1  
POWER MANAGED MODE  
OPERATION  
Given the desired baud rate and FOSC, the nearest  
integer value for the SPBRG register can be calculated  
using the formula in Table 18-1. From this, the error in  
baud rate can be determined.  
The system clock is used to generate the desired baud  
rate; however, when a power managed mode is  
entered, the clock source may be operating at a differ-  
ent frequency than in PRI_RUN mode. In Sleep mode,  
no clocks are present and in PRI_IDLE, the primary  
clock source continues to provide clocks to the baud  
rate generator; however, in other power managed  
modes, the clock frequency will probably change. This  
may require the value in SPBRG to be adjusted.  
Example 18-1 shows the calculation of the baud rate  
error for the following conditions:  
• FOSC = 16 MHz  
• Desired Baud Rate = 9600  
• BRGH = 0  
• SYNC = 0  
18.2.2  
SAMPLING  
The data on the RC7/RX/DT pin is sampled three times  
by a majority detect circuit to determine if a high or a  
low level is present at the RX pin.  
EXAMPLE 18-1:  
CALCULATING BAUD RATE ERROR  
Desired Baud Rate  
= FOSC/(64 (X + 1))  
Solving for X:  
X
X
X
= ((FOSC/Desired Baud Rate)/64) – 1  
= ((16000000/9600)/64) – 1  
= [25.042] = 25  
Calculated Baud Rate = 16000000/(64 (25 + 1))  
= 9615  
Error  
= (Calculated Baud Rate – Desired Baud Rate)  
Desired Baud Rate  
= (9615 – 9600)/9600  
= 0.16%  
TABLE 18-1: BAUD RATE FORMULA  
SYNC  
BRGH = 0 (Low Speed)  
BRGH = 1 (High Speed)  
Baud Rate = FOSC/(16 (X + 1))  
N/A  
0(Asynchronous)  
1(Synchronous)  
Baud Rate = FOSC/(64 (X + 1))  
Baud Rate = FOSC/(4 (X + 1))  
Legend: X = value in SPBRG (0 to 255)  
TABLE 18-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR  
Value on  
all other  
Resets  
Value on  
POR, BOR  
Name  
Bit 7  
Bit 6  
Bit 5  
Bit 4  
Bit 3  
Bit 2  
Bit 1  
Bit 0  
TXSTA  
RCSTA  
SPBRG  
CSRC  
SPEN  
TX9  
RX9  
TXEN SYNC  
BRGH TRMT TX9D 0000 -010  
0000 -010  
0000 -00x  
0000 0000  
SREN CREN ADDEN FERR OERR RX9D 0000 -00x  
0000 0000  
Baud Rate Generator Register  
Legend: x= unknown, - = unimplemented, read as ‘0’. Shaded cells are not used by the BRG.  
DS39599C-page 198  
2003 Microchip Technology Inc.