欢迎访问ic37.com |
会员登录 免费注册
发布采购

MCP1640BT-I/MC 参数 Datasheet PDF下载

MCP1640BT-I/MC图片预览
型号: MCP1640BT-I/MC
PDF下载: 下载PDF文件 查看货源
内容描述: 0.65V启动同步升压稳压器具有真正输出断接和输入/输出旁路选项 [0.65V Start-up Synchronous Boost Regulator with True Output Disconnect or Input/Output Bypass Option]
分类和应用: 稳压器
文件页数/大小: 32 页 / 474 K
品牌: MICROCHIP [ MICROCHIP ]
 浏览型号MCP1640BT-I/MC的Datasheet PDF文件第12页浏览型号MCP1640BT-I/MC的Datasheet PDF文件第13页浏览型号MCP1640BT-I/MC的Datasheet PDF文件第14页浏览型号MCP1640BT-I/MC的Datasheet PDF文件第15页浏览型号MCP1640BT-I/MC的Datasheet PDF文件第17页浏览型号MCP1640BT-I/MC的Datasheet PDF文件第18页浏览型号MCP1640BT-I/MC的Datasheet PDF文件第19页浏览型号MCP1640BT-I/MC的Datasheet PDF文件第20页  
MCP1640/B/C/D  
Peak current is the maximum or limit, and saturation  
current typically specifies a point at which the induc-  
tance has rolled off a percentage of the rated value.  
This can range from a 20% to 40% reduction in induc-  
tance. As inductance rolls off, the inductor ripple cur-  
rent increases as does the peak switch current. It is  
important to keep the inductance from rolling off too  
much, causing switch current to reach the peak limit.  
5.5  
Inductor Selection  
The MCP1640/B/C/D is designed to be used with small  
surface mount inductors; the inductance value can  
range from 2.2 µH to 10 µH. An inductance value of  
4.7 µH is recommended to achieve a good balance  
between inductor size, converter load transient  
response and minimized noise.  
TABLE 5-2:  
MCP1640/B/C/D  
RECOMMENDED INDUCTORS  
5.6  
Thermal Calculations  
The MCP1640/B/C/D is available in two different  
packages (SOT23-6 and 2x3 DFN8). By calculating the  
power dissipation and applying the package thermal  
resistance, (JA), the junction temperature is esti-  
mated. The maximum continuous junction temperature  
rating for the MCP1640/B/C/D is +125oC.  
Part  
Number  
Value  
DCR  
ISAT  
Size  
(µH) (typ) (A) WxLxH (mm)  
Coiltronics®  
SD3110  
SD3112  
SD3114  
SD3118  
SD3812  
SD25  
4.7  
4.7  
4.7  
4.7  
4.7  
4.7  
0.285 0.68  
0.246 0.80  
0.251 1.14  
0.162 1.31  
0.256 1.13  
0.0467 1.83  
3.1x3.1x1.0  
3.1x3.1x1.2  
3.1x3.1x1.4  
3.8x3.8x1.2  
3.8x3.8x1.2  
5.0x5.0x2.5  
To quickly estimate the internal power dissipation for  
the switching boost regulator, an empirical calculation  
using measured efficiency can be used. Given the  
measured efficiency, the internal power dissipation is  
estimated by Equation 5-3.  
DCR  
ISAT  
(max)  
Part  
Number  
Value  
(µH)  
Size  
EQUATION 5-3:  
(A) WxLxH (mm)  
Wurth Elektronik®  
VOUT IOUT  
------------------------------ VOUT IOUT= PDis  
WE-TPC  
Type TH  
4.7  
4.7  
4.7  
4.7  
0.200  
0.8  
2.8x2.8x1.35  
Efficiency  
WE-TPC  
Type S  
0.105 0.90 3.8x3.8x1.65  
The difference between the first term, input power, and  
the second term, power delivered, is the internal  
MCP1640/B/C/D power dissipation. This is an estimate  
assuming that most of the power lost is internal to the  
MCP1640/B/C/D and not CIN, COUT and the inductor.  
There is some percentage of power lost in the boost  
inductor, with very little loss in the input and output  
capacitors. For a more accurate estimation of internal  
power dissipation, subtract the IINRMS2*LESR power  
dissipation.  
WE-TPC  
Type M  
0.082 1.65  
0.046 2.00  
4.8x4.8x1.8  
6.8x6.8x2.3  
WE-TPC  
Type X  
DCR  
ISAT  
(max)  
Part  
Number  
Value  
(µH)  
Size  
(A) WxLxH (mm)  
Sumida®  
CMH23  
4.7  
4.7  
4.7  
0.537 0.70  
0.216 0.75  
2.3x2.3x1.0  
3.5x4.3x0.8  
5.7  
PCB Layout Information  
CMD4D06  
CDRH4D  
EPCOS®  
0.09 0.800 4.6x4.6x1.5  
Good printed circuit board layout techniques are  
important to any switching circuitry and switching  
power supplies are no different. When wiring the  
switching high current paths, short and wide traces  
should be used. Therefore it is important that the input  
and output capacitors be placed as close as possible to  
the MCP1640/B/C/D to minimize the loop area.  
B82462A2  
472M000  
4.7  
4.7  
0.084 2.00  
0.04 1.8  
6.0x6.0x2.5  
6.3x6.3x3.0  
B82462G4  
472M  
Several parameters are used to select the correct  
inductor: maximum rated current, saturation current  
and copper resistance (ESR). For boost converters, the  
inductor current can be much higher than the output  
current. The lower the inductor ESR, the higher the  
efficiency of the converter, a common trade-off in size  
versus efficiency.  
The feedback resistors and feedback signal should be  
routed away from the switching node and the switching  
current loop. When possible, ground planes and traces  
should be used to help shield the feedback signal and  
minimize noise and magnetic interference.  
DS22234A-page 16  
2010 Microchip Technology Inc.  
 复制成功!