欢迎访问ic37.com |
会员登录 免费注册
发布采购

ML2258CIP 参数 Datasheet PDF下载

ML2258CIP图片预览
型号: ML2258CIP
PDF下载: 下载PDF文件 查看货源
内容描述: レP兼容的8位A / D转换器, 8通道多路复用器 [レP Compatible 8-Bit A/D Converter with 8-Channel Multiplexer]
分类和应用: 转换器复用器光电二极管
文件页数/大小: 12 页 / 172 K
品牌: MICRO-LINEAR [ MICRO LINEAR CORPORATION ]
 浏览型号ML2258CIP的Datasheet PDF文件第1页浏览型号ML2258CIP的Datasheet PDF文件第2页浏览型号ML2258CIP的Datasheet PDF文件第3页浏览型号ML2258CIP的Datasheet PDF文件第5页浏览型号ML2258CIP的Datasheet PDF文件第6页浏览型号ML2258CIP的Datasheet PDF文件第7页浏览型号ML2258CIP的Datasheet PDF文件第8页浏览型号ML2258CIP的Datasheet PDF文件第9页  
ML2258  
ELECTRICAL CHARACTERISTICS (Continued)  
TYP  
SYMBOL  
PARAMETER  
NOTES  
CONDITIONS  
MIN (NOTE 4)  
MAX  
UNITS  
AC and Dynamic Performance Characteristics (Note 10)  
tACQ  
fCLK  
tC  
Sample and Hold Acquisition  
Clock Frequency  
4
1/fCLK  
kHz  
5
5
100  
67  
10240  
Conversion Time  
67 + 250ns 1/fCLK  
dB  
SNR  
Signal to Noise Ratio  
VIN = 51kHz, 5V sine.  
fCLK = 10.24MHz  
47  
(fSAMPLING > 150kHz). Noise is sum  
of all nonfundamental components  
up to 1/2 of fSAMPLING  
THD  
IMD  
Total Harmonic Distortion  
Intermodulation Distortion  
VIN = 51kHz, 5V sine.  
fCLK = 10.24MHz  
(fSAMPLING > 150kHz). THD is sum  
of 2, 3, 4, 5 harmonics relative to  
fundamental  
–60  
–60  
dB  
dB  
V
IN = fA + fB. fA = 49kHz, 2.5V sine.  
fB = 47.8kHz, 2.5V sine,  
fCLK = 10.24MHz  
(fSAMPLING > 150kHz). IMD is (fA + fB),  
(fA – fB), (2fA + fB), (2fA – fB), (fA + 2fB),  
(fA – 2fB) relative to fundamental  
FR  
Frequency Response  
V
IN = 0 to 50kHz. 5V sine relative  
0.1  
dB  
to 1kHz  
tDC  
tEOC  
tWS  
tSS  
Clock Duty Cycle  
6, 11  
40  
60  
%
End of Conversion Delay  
Start Pulse Width  
5
8
8 + 250ns 1/fCLK  
5
50  
40  
50  
0
ns  
ns  
ns  
ns  
ns  
Start Pulse Setup Time  
Address Latch Enable Pulse Width  
Address Setup  
6, 12  
Synchronous only  
tWALE  
tS  
5
5
5
6
6
6
6
tH  
Address Hold  
50  
tH1, H0 Output Enable for DB0–DB7  
Figure 1, CL = 50pF  
Figure 1, CL = 10pF  
Figure 1, CL = 50pF  
Figure 1, CL = 10pF  
100  
50  
ns  
ns  
ns  
ns  
pF  
pF  
t1H, 0H Output Disable for DB0–DB7  
200  
100  
CIN  
Capacitance of Logic Input  
5
COUT  
Capacitance of Logic Outputs  
10  
Note 1: Absolute maximum ratings are limits beyond which the life of the integrated circuit may be impaired. All voltages unless otherwise specified are measured with  
respect to ground.  
Note 2: When the input voltage (VIN) at any pin exceeds the power supply rails (VIN < V– or VIN > V+) the absolute value of current at that pin should be limited to 25mA or less.  
Note 3: –40°C to +85°C operating temperature range devices are 100% tested with temperature limits guaranteed by 100% testing, sampling, or by correlation with worst-  
case test conditions.  
Note 4: Typicals are parametric norm at 25°C.  
Note 5: Parameter guaranteed and 100% production tested.  
Note 6: Parameter guaranteed. Parameters not 100% tested are not in outgoing quality level calculation.  
Note 7: Total unadjusted error includes offset, full scale, linearity, multiplexer and sample and hold errors.  
Note 8: For –VREF • VIN (+) the digital output code will be 0000 0000. Two on-chip diodes are tied to each analog input which will forward conduct for analog input voltages  
one diode drop below ground or one diode drop greater than the VCC supply. Be careful, during testing at low VCC levels (4.5V), as high level analog inputs (5V) can  
cause this input diode to conduct — especially at elevated temperatures, and cause errors for analog inputs near full scale. The spec allow 100mV forward bias of either  
diode. This means that as long as the analog VIN or VREF does not exceed the supply voltage by more than 100mV, the output code will be correct. To achieve an  
absolute 0VDC to 5VDC input voltage range will therefore require a minimum supply voltage of 4.900VDC over temperature variations, initial tolerance and loading.  
Note 9: Leakage current is measured with the clock not switching.  
Note 10: CL = 50pF, timing measured at 50% point.  
Note 11: A 40% to 60% clock duty cycle range insures proper operation at all clock frequencies. In the case that an available clock has a duty cycle outside of these limits,  
the minimum time the clock is high or the minimum time the clock is low must be at least 40ns. The maximum time the clock can be high or low is 60µs.  
Note 12: The conversion start setup time requirement only needs to be satisfied if a conversion must be synchronized to a given clock rising edge. If the setup time is not met,  
start conversion will have an uncertainty of one clock pulse.  
4