欢迎访问ic37.com |
会员登录 免费注册
发布采购

MIC49150-1.2BMM 参数 Datasheet PDF下载

MIC49150-1.2BMM图片预览
型号: MIC49150-1.2BMM
PDF下载: 下载PDF文件 查看货源
内容描述: 1.5A低压LDO稳压器瓦特/双输入电压 [1.5A Low Voltage LDO Regulator w/Dual Input Voltages]
分类和应用: 稳压器
文件页数/大小: 13 页 / 340 K
品牌: MICREL [ MICREL SEMICONDUCTOR ]
 浏览型号MIC49150-1.2BMM的Datasheet PDF文件第5页浏览型号MIC49150-1.2BMM的Datasheet PDF文件第6页浏览型号MIC49150-1.2BMM的Datasheet PDF文件第7页浏览型号MIC49150-1.2BMM的Datasheet PDF文件第8页浏览型号MIC49150-1.2BMM的Datasheet PDF文件第10页浏览型号MIC49150-1.2BMM的Datasheet PDF文件第11页浏览型号MIC49150-1.2BMM的Datasheet PDF文件第12页浏览型号MIC49150-1.2BMM的Datasheet PDF文件第13页  
Micrel, Inc.
MIC49150
type of ceramic capacitors. Z5U and Y5V dielectric
capacitors change value by as much as 50% and 60%
respectively over their operating temperature ranges. To
use a ceramic chip capacitor with Y5V dielectric, the
value must be much higher than an X7R ceramic or a
tantalum capacitor to ensure the same capacitance
value over the operating temperature range. Tantalum
capacitors have a very stable dielectric (10% over their
operating temperature range) and can also be used with
this device.
Input Capacitor
An input capacitor of 1µF or greater is recommended
when the device is more than 4" away from the bulk
supply capacitance, or when the supply is a battery.
Small, surface-mount, ceramic chip capacitors can be
used for the bypassing. The capacitor should be placed
within 1" of the device for optimal performance. Larger
values will help to improve ripple rejection by bypassing
the input to the regulator, further improving the integrity
of the output voltage.
Thermal Design
Linear regulators are simple to use. The most
complicated design parameters to consider are thermal
characteristics. Thermal design requires the following
application-specific parameters:
Maximum ambient temperature (T
A
)
Output current (I
OUT
)
Output voltage (V
OUT
)
Input voltage (V
IN
)
Ground current (I
GND
)
First, calculate the power dissipation of the regulator
from these numbers and the device parameters from this
datasheet.
P
D
= V
IN
× I
IN
+ V
BIAS
× I
BIAS
– V
OUT
× I
OUT
The input current will be less than the output current at
high output currents as the load increases. The bias
current is a sum of base drive and ground current.
Ground current is constant over load current. Then the
heat sink thermal resistance is determined with this
formula:
T
J(MAX)
T
A
θ
SA
= ⎜
P
D
⎟ −
(
θ
JC
+
θ
CS
)
Application Information
The MIC49150 is an ultra-high performance, low-dropout
linear regulator designed for high current applications
requiring fast transient response. The MIC49150 utilizes
two input supplies, significantly reducing dropout
voltage, perfect for low-voltage, DC-to-DC conversion.
The MIC49150 requires a minimum of external comp-
onents and obtains a bandwidth of up to 10MHz. As a
µCap regulator, the output is tolerant of virtually any type
of capacitor including ceramic type and tantalum type
capacitors.
The MIC49150 regulator is fully protected from damage
due to fault conditions, offering linear current limiting and
thermal shutdown.
Bias Supply Voltage
V
BIAS
, requiring relatively light current, provides power to
the control portion of the MIC49150. V
BIAS
requires
approximately 33mA for a 1.5A load current. Dropout
conditions require higher currents. Most of the biasing
current is used to supply the base current to the pass
transistor. This allows the pass element to be driven into
saturation, reducing the dropout to 300mV at a 1.5A load
current. Bypassing on the bias pin is recommended to
improve performance of the regulator during line and
load transients. Small ceramic capacitors from V
BIAS
to
ground help reduce high frequency noise from being
injected into the control circuitry from the bias rail and
are good design practice. Good bypass techniques
typically include one larger capacitor such as 1µF
ceramic and smaller valued capacitors such as 0.01µF
or 0.001µF in parallel with that larger capacitor to
decouple the bias supply. The V
BIAS
input voltage must
be 1.6V above the output voltage with a minimum V
BIAS
input voltage of 3 volts.
Input Supply Voltage
VIN provides the high current to the collector of the pass
transistor. The minimum input voltage is 1.4V, allowing
con-version from low voltage supplies.
Output Capacitor
The MIC49150 requires a minimum of output capaci-
tance to maintain stability. However, proper capacitor
selection is important to ensure desired transient
response. The MIC49150 is specifically designed to be
stable with virtually any capacitance value and ESR. A
1µF ceramic chip capacitor should satisfy most app-
lications. Output capacitance can be increased without
bound. See “Typical
Characteristic”
for examples of load
transient response.
X7R dielectric ceramic capacitors are recommended
because of their temperature performance. X7R-type
capacitors change capacitance by 15% over their
operating temperature range and are the most stable
November 2006
9
The heat sink may be significantly reduced in
applications where the maximum input voltage is known
and large compared with the dropout voltage. Use a
series input resistor to drop excessive voltage and
distribute the heat between this resistor and the
regulator. The low-dropout properties of the MIC49150
allow significant reductions in regulator power dissipation
and the associated heat sink without compromising
performance. When this technique is employed, a
M9999-111306