欢迎访问ic37.com |
会员登录 免费注册
发布采购

MIC3172BM 参数 Datasheet PDF下载

MIC3172BM图片预览
型号: MIC3172BM
PDF下载: 下载PDF文件 查看货源
内容描述: 100kHz的1.25A开关稳压器的初步信息 [100kHz 1.25A Switching Regulators Preliminary Information]
分类和应用: 稳压器开关式稳压器或控制器电源电路开关式控制器光电二极管
文件页数/大小: 16 页 / 133 K
品牌: MICREL [ MICREL SEMICONDUCTOR ]
 浏览型号MIC3172BM的Datasheet PDF文件第6页浏览型号MIC3172BM的Datasheet PDF文件第7页浏览型号MIC3172BM的Datasheet PDF文件第8页浏览型号MIC3172BM的Datasheet PDF文件第9页浏览型号MIC3172BM的Datasheet PDF文件第11页浏览型号MIC3172BM的Datasheet PDF文件第12页浏览型号MIC3172BM的Datasheet PDF文件第13页浏览型号MIC3172BM的Datasheet PDF文件第14页  
MIC2172/3172  
Micrel  
Figure 7 shows how one or more MIC2172s can be locked to  
an external reference frequency. The slaves lock to the  
negative (falling edge) of the external reference waveform.  
the total power dissipation is the sum of the device operating  
losses and power switch losses.  
The device operating losses are the dc losses associated  
with biasing all of the internal functions plus the losses of the  
power switch driver circuitry. The dc losses are calculated  
from the supply voltage (V ) and device supply current (I ).  
Soft Start  
A diode-coupled capacitor from COMP to circuit ground  
slows the output voltage rise at turn on (figure 8).  
IN  
Q
TheMIC2172/3172supplycurrentisalmostconstantregard-  
less of the supply voltage (see “Electrical Characteristics”).  
The driver section losses (not including the switch) are a  
function of supply voltage, power switch current, and duty  
cycle.  
VIN  
VIN  
MIC2172/3172  
0.004+δ  
COMP  
P
= V  
(
I
+ V I  
IN SW  
)
(bias+driver)  
IN Q  
50  
D1  
D2  
C1  
R1  
C2  
where:  
P
V
= device operating losses  
(bias+driver)  
= supply voltage  
IN  
Figure 8. Soft Start  
I = quiescent supply current  
Q
Theadditionaltimeittakesfortheerroramplifiertochargethe  
capacitor corresponds to the time it takes the output to reach  
regulation. Diode D1 discharges C1 when V is removed.  
I
= power switch current  
(see “ Design Hints: Switch Current  
Calculations”)  
SW  
IN  
Current Limit  
δ = duty cycle  
FordesignsdemandinglessoutputcurrentthantheMIC2172/  
3172 is capable of delivering, P GND 1 can be left open  
reducing the current capability of Q1 by one-half.  
V
+ V – V  
OUT  
F
IN  
δ =  
V
+ V  
OUT  
F
V
= output voltage  
OUT  
VIN  
V = D1 forward voltage drop  
F
VIN  
VSW  
As a practical example refer to figure 1.  
MIC2172/3172  
V
= 5.0V  
IN  
VOUT  
FB  
P1 P2 S COMP  
GND  
I = 0.006A  
Q
I
= 0.625A  
SW  
δ = 60% (0.6)  
R1  
ICL 0.6V/R2  
R3  
C2  
Q1  
Then:  
C1  
R2  
Note: Input and output  
returns not common.  
0.004+0.6  
50  
P(bias+driver) = 5 × 0.006 + 5 0.625  
(
)
Figure 9. Current Limit  
P
= 0.068W  
(bias+driver)  
Alternatively,themaximumcurrentlimitoftheMIC2172/3172  
can be reduced by adding a voltage clamp to the COMP  
output (figure 9). This feature can be useful in applications  
requiringeitheracompleteshutdownofQ1’sswitchingaction  
or a form of current fold-back limiting. This use of the COMP  
output does not disable the oscillator, amplifiers or other  
circuitry, therefore the supply current is never less than  
approximately 5mA.  
Power switch dissipation calculations are greatly simplified  
bymakingtwoassumptionswhichareusuallyfairlyaccurate.  
First, the majority of losses in the power switch are due to  
on-losses. To find these losses, assign a resistance value to  
the collector/emitter terminals of the device using the satura-  
tion voltage versus collector current curves (see Typical  
Performance Characteristics). Power switch losses are  
calculatedbymodelingtheswitchasaresistorwiththeswitch  
duty cycle modifying the average power dissipation.  
Thermal Management  
Although the MIC2172/3172 family contains thermal protec-  
tion circuitry, for best reliability, avoid prolonged operation  
with junction temperatures near the rated maximum.  
2
P
= (I ) R  
δ
SW  
SW  
SW  
From the Typical performance Characteristics:  
The junction temperature is determined by first calculating  
the power dissipation of the device. For the MIC2172/3172,  
R
= 1Ω  
SW  
4-22  
1997