Real-Time Clock
5/DS12C87A
Control Registers
The real-time clocks have four control registers that are
accessible at all times, even during the update cycle.
Control Register A
MSB
LSB
BIT 7
BIT 6
BIT 5
BIT 4
BIT 3
BIT 2
BIT 1
BIT 0
UIP
DV2
DV1
DV0
RS3
RS2
RS1
RS0
Bit 7: Update-In-Progress (UIP). This bit is a status
flag that can be monitored. When the UIP bit is a 1, the
update transfer occurs soon. When UIP is a 0, the
update transfer does not occur for at least 244µs. The
time, calendar, and alarm information in RAM is fully
available for access when the UIP bit is 0. The UIP bit is
read-only and is not affected by RESET. Writing the
SET bit in Register B to a 1 inhibits any update transfer
and clears the UIP status bit.
Bits 3 to 0: Rate Selector (RS3, RS2, RS1, RS0).
These four rate-selection bits select one of the 13 taps
on the 15-stage divider or disable the divider output.
The tap selected can be used to generate an output
square wave (SQW pin) and/or a periodic interrupt. The
user can do one of the following:
1) Enable the interrupt with the PIE bit;
2) Enable the SQW output pin with the SQWE bit;
3) Enable both at the same time and the same rate;
or
Bits 6, 5, and 4: DV2, DV1, DV0. These three bits are
used to turn the oscillator on or off and to reset the
countdown chain. A pattern of 010 is the only combina-
tion of bits that turn the oscillator on and allow the RTC
to keep time. A pattern of 11x enables the oscillator but
holds the countdown chain in reset. The next update
occurs at 500ms after a pattern of 010 is written to DV0,
DV1, and DV2.
4) Enable neither.
Table 3 lists the periodic interrupt rates and the square-
wave frequencies that can be chosen with the RS bits.
These four read/write bits are not affected by RESET.
____________________________________________________________________ 15