欢迎访问ic37.com |
会员登录 免费注册
发布采购

ICL7650ITV-1 参数 Datasheet PDF下载

ICL7650ITV-1图片预览
型号: ICL7650ITV-1
PDF下载: 下载PDF文件 查看货源
内容描述: 零漂移运算放大器 [Zero-Drift Operational Amplifier]
分类和应用: 运算放大器斩波器
文件页数/大小: 24 页 / 846 K
品牌: Linear [ Linear ]
 浏览型号ICL7650ITV-1的Datasheet PDF文件第5页浏览型号ICL7650ITV-1的Datasheet PDF文件第6页浏览型号ICL7650ITV-1的Datasheet PDF文件第7页浏览型号ICL7650ITV-1的Datasheet PDF文件第8页浏览型号ICL7650ITV-1的Datasheet PDF文件第10页浏览型号ICL7650ITV-1的Datasheet PDF文件第11页浏览型号ICL7650ITV-1的Datasheet PDF文件第12页浏览型号ICL7650ITV-1的Datasheet PDF文件第13页  
LTC1052/LTC7652  
W U U  
APPLICATIO S I FOR ATIO  
U
connections, to the inverting input. Guarding both sides  
of the printed circuit board is required. Bulk leakage  
reduction depends on the guard ring width.  
Figure 2 is an example of the introduction of an  
unnecessary resistor to promote differential thermal  
balance. Maintaining compensating junctions in close  
physicalproximitywillkeepthematthesametemperature  
and reduce thermal EMF errors.  
NOMINALLY UNNECESSARY  
RESISTOR USED TO  
LEAD WIRE/SOLDER/COPPER  
THERMALLY BALANCE OTHER  
TRACE JUNCTION  
INPUT RESISTOR  
+
OUTPUT  
LTC1052  
RESISTOR LEAD, SOLDER,  
COPPER TRACE JUNCTION  
Microvolts  
ThermocoupleeffectsmustbeconsiderediftheLTC1052’s  
ultralow drift is to be fully utilized. Any connection  
of dissimilar metals forms a thermoelectric junction  
producing an electric potential which varies with  
temperature (Seebeck effect). As temperature sensors,  
thermocouples exploit this phenomenon to produce  
useful information. In low drift amplifier circuits the effect  
is a primary source of error.  
LTC1052/7652 • AI03  
Figure 2  
When connectors, switches, relays and/or sockets are  
necessary they should be selected for low thermal EMF  
activity. The same techniques of thermally balancing and  
coupling the matching junctions are effective in reducing  
the thermal EMF errors of these components.  
Connectors, switches, relay contacts, sockets, resistors,  
solder, and even copper wire are all candidates for  
thermal EMF generation. Junctions of copper wire from  
different manufacturers can generate thermal EMFs of  
200nV/°C—4 times the maximum drift specification of  
the LTC1052. The copper/kovar junction, formed when  
wire or printed circuit traces contact a package lead, has  
a thermal EMF of approximately 35µV/°C700 times the  
maximum drift specification of the LTC1052.  
Resistors are another source of thermal EMF errors.  
Table 1 shows the thermal EMF generated for different  
resistors. The temperature gradient across the resistor is  
important, not the ambient temperature. There are two  
junctions formed at each end of the resistor and if these  
junctions are at the same temperature, their thermal EMFs  
will cancel each other. The thermal EMF numbers are  
approximate and vary with resistor value. High values give  
higher thermal EMF.  
Minimizing thermal EMF-induced errors is possible if  
judicious attention is given to circuit board layout and  
component selection. It is good practice to minimize the  
number of junctions in the amplifier’s input signal path.  
Avoid connectors, sockets, switches and relays where  
possible. In instances where this is not possible, attempt  
to balance the number and type of junctions so that  
differential cancellation occurs. Doing this may involve  
deliberately introducing junctions to offset unavoidable  
junctions.  
Table 1. Resistor Thermal EMF  
RESISTOR TYPE  
Tin Oxide  
THERMAL EMF/°C GRADIENT  
~mV/’C  
Carbon Composition  
Metal Film  
~450µV/°C  
~20µV/°C  
Wire Wound  
Evenohm  
Manganin  
~2µV/°C  
~2µV/°C  
1052fa  
9
 复制成功!