欢迎访问ic37.com |
会员登录 免费注册
发布采购

240VA 参数 Datasheet PDF下载

240VA图片预览
型号: 240VA
PDF下载: 下载PDF文件 查看货源
内容描述: 在系统可编程3.3V通用数字CrosspointTM [In-System Programmable 3.3V Generic Digital CrosspointTM]
分类和应用:
文件页数/大小: 25 页 / 324 K
品牌: LATTICE [ LATTICE SEMICONDUCTOR ]
 浏览型号240VA的Datasheet PDF文件第1页浏览型号240VA的Datasheet PDF文件第2页浏览型号240VA的Datasheet PDF文件第4页浏览型号240VA的Datasheet PDF文件第5页浏览型号240VA的Datasheet PDF文件第6页浏览型号240VA的Datasheet PDF文件第7页浏览型号240VA的Datasheet PDF文件第8页浏览型号240VA的Datasheet PDF文件第9页  
Specifications ispGDX240VA  
Architecture  
The ispGDXVA architecture is different from traditional The various I/O pin sets are also shown in the block  
PLD architectures, in keeping with its unique application diagram below. The A, B, C, and D I/O pins are grouped  
focus. The block diagram is shown below. The program- together with one group per side.  
mable interconnect consists of a single Global Routing  
I/O Architecture  
Pool (GRP). Unlike ispLSI devices, there are no pro-  
grammable logic arrays on the device. Control signals for  
OEs, Clocks/Clock Enables and MUX Controls must  
come from designated sets of I/O pins. The polarity of  
these signals can be independently programmed in each  
I/O cell.  
Each I/O cell contains a 4:1 dynamic MUX controlled by  
two select lines as well as a 4x4 crossbar switch con-  
trolledbysoftwareforincreasedroutingflexiability(Figure  
1). The four data inputs to the MUX (called M0, M1, M2,  
and M3) come from I/O signals in the GRP and/or  
adjacent I/O cells. Each MUX data input can access one  
quarter of the total I/Os. For example, in a 240-I/O  
ispGDXVA, each data input can connect to one of 60 I/O  
pins. MUX0 and MUX1 can be driven by designated I/O  
pins called MUXsel1 and MUXsel2. Each MUXsel input  
covers25%ofthetotalI/Opins(e.g.60outof240).MUX0  
andMUX1canbedrivenfromeitherMUXsel1orMUXsel2.  
Each I/O cell drives a unique pin. The OE control for each  
I/O pin is independent and may be driven via the GRP by  
one of the designated I/O pins (I/O-OE set). The I/O-OE  
set consists of 25% of the total I/O pins. Boundary Scan  
test is supported by dedicated registers at each I/O pin.  
In-system programming is accomplished through the  
standard Boundary Scan protocol.  
Figure 1. ispGDXVA I/O Cell and GRP Detail (240 I/O Device)  
Logic 1”  
Logic 0”  
240 I/O Inputs  
I/O Cell 239  
I/O Cell 238  
I/OCell 0  
I/O Cell 1  
E2CMOS  
Programmable  
Interconnect  
Prog.  
Bus Hold  
Latch  
Prog.  
To 2 Adjacent  
I/O Cells above  
From MUX Outputs  
Pull-up  
Bypass Option  
of 2 Adjacent I/O Cells  
(VCCIO)  
N+2  
N-1  
4-to-1 MUX  
M0  
M1  
M2  
Register  
or Latch  
N+1  
4x4  
I/O Group A  
I/O Group B  
I/O Group C  
I/O Group D  
I/O  
Pin  
C
R
A
B
Crossbar  
Switch  
D
Q
M3  
CLK  
N-2  
Prog. Open Drain  
MUX0 MUX1  
CLK_EN Reset  
From MUX Outputs  
of 2 Adjacent I/O Cells  
To 2 Adjacent  
I/O Cells below  
2.5V/3.3V Output  
Prog. Slew Rate  
Boundary  
Scan Cell  
I/O Cell N  
I/O Cell 118  
I/O Cell 121  
I/O Cell 120  
• • • • • •  
I/O Cell 119  
120 I/O Cells  
120 I/O Cells  
240 Input GRP  
Inputs Vertical  
Outputs Horizontal  
Global  
Reset  
Y0-Y3  
Global  
Clocks /  
ispGDXVA architecture enhancements over ispGDX (5V)  
Clock_Enables  
3
 复制成功!