欢迎访问ic37.com |
会员登录 免费注册
发布采购

HCPL4562 参数 Datasheet PDF下载

HCPL4562图片预览
型号: HCPL4562
PDF下载: 下载PDF文件 查看货源
内容描述: 高带宽,模拟/视频光电耦合器 [High Bandwidth, Analog/Video Optocouplers]
分类和应用: 光电
文件页数/大小: 17 页 / 266 K
品牌: HP [ HEWLETT-PACKARD ]
 浏览型号HCPL4562的Datasheet PDF文件第9页浏览型号HCPL4562的Datasheet PDF文件第10页浏览型号HCPL4562的Datasheet PDF文件第11页浏览型号HCPL4562的Datasheet PDF文件第12页浏览型号HCPL4562的Datasheet PDF文件第13页浏览型号HCPL4562的Datasheet PDF文件第14页浏览型号HCPL4562的Datasheet PDF文件第15页浏览型号HCPL4562的Datasheet PDF文件第16页  
Conversion from HCPL-4562 to  
HCNW4562  
Figure 15 shows the dependency of the DC output  
voltage on hFEX  
.
In order to obtain similar circuit performance when  
converting from the HCPL-4562 to the HCNW4562,  
it is recommended to increase the Quiescent Input  
Current, IFQ, from 6 mA to 10 mA. If the application  
circuit in Figure 4 is used, then potentiometer R4  
should be adjusted appropriately.  
For 9 V < VCC < 12 V, select the value of R11 such  
that  
VO  
R11  
4.25 V  
470 Ω  
IC––– –––––– 9.0 mA  
(8)  
(9)  
Q4  
The voltage gain of the second stage (Q3) is  
approximately equal to:  
Design Considerations of the  
Application Circuit  
R
R10  
1
––9– –––––––––––––––––––––––––  
*
The application circuit in Figure 4 incorporates  
several features that help maximize the bandwidth  
performance of the HCPL-4562/HCNW4562. Most  
important of these features is peaked response of  
the detector circuit that helps extend the frequency  
range over which the voltage gain is relatively  
constant. The number of gain stages, the overall  
circuit topology, and the choice of DC bias points  
are all consequences of the desire to maximize  
bandwidth performance.  
1
1 + s R9 CCQ + –––––––––  
3
2π RfT
11  
4
Increasing R(Rincludes the parallel  
11  
11  
combination of R11 and the load impedance) or  
reducing R9 (keeping R9/R10 ratio constant) will  
improve the bandwidth.  
If it is necessary to drive a low impedance load,  
bandwidth may also be preserved by adding an  
additional emitter following the buffer stage (Q5 in  
Figure 16), in which case R11 can be increased to  
set ICQ4 2 mA.  
To use the circuit, first select R1 to set VE for the  
desired LED quiescent current by:  
VE  
FQ = ––  
R4  
GV V R10  
(IPB/IF) R7R9  
––––––E––––––  
(1)  
Finally, adjust R4 to achieve the desired voltage  
gain.  
I
VOUT IPB R7R9  
For a constant value VINp-p, the circuit topology  
GV –––– –––– ––––––  
(10)  
(adjusting the gain with R4) preserves linearity by  
keeping the modulation factor (MF) dependent only  
on VE.  
V
IN  
IF R4R10  
IPB  
where typically –––– = 0.0032  
IF  
iFp-p V /R4  
(2)  
IN  
p-p  
Definition:  
GV = Voltage Gain  
iFp
iPB
V
IN
p-p  
p-p  
p-p  
–––– ––––– = –––––  
(3)  
(4)  
IFQ = Quiescent LED forward current  
iFp-p = Peak-to-peak small signal LED forward  
current  
INp-p = Peak-to-peak small signal input voltage  
iPBp-p = Peak-to-peak small signal  
base photo current  
IPBQ = Quiescent base photo current  
VBEX = Base-Emitter voltage of HCPL-4562/  
HCNW4562 transistor  
IBXQ = Quiescent base current of HCPL-4562/  
HCNW4562 transistor  
IFQ  
IPBQ  
VE  
Modulation  
Factor (MF): ––––– = –––––  
2 IFQ 2 VE  
iF
V
IN
p-p  
(p-p)  
V
For a given GV, VE, and VCC, DC output voltage will  
vary only with hFEX  
.
R9  
R10  
VO = VCC VBE ––– [VBEX (IPBQ IBXQ) R7]  
(5)  
4
Where:  
hFEX = Current Gain (IC/IB) of HCPL-4562/  
HCNW4562 transistor  
VE = Voltage across emitter degeneration  
resistor R4  
GV VER  
IPBQ –––––––10  
R7R9  
(6)  
(7)  
and,  
f
= Unity gain frequency of Q5  
T4  
CCQ = Effective capacitance from collector of Q3  
VCC 2 VBE  
IBXQ ––––––––––  
R6 hFEX  
3
to ground  
1-401  
 复制成功!