欢迎访问ic37.com |
会员登录 免费注册
发布采购

MC908AP32CFAE 参数 Datasheet PDF下载

MC908AP32CFAE图片预览
型号: MC908AP32CFAE
PDF下载: 下载PDF文件 查看货源
内容描述: [MC908AP32CFAE]
分类和应用:
文件页数/大小: 325 页 / 4102 K
品牌: FREESCALE [ Freescale ]
 浏览型号MC908AP32CFAE的Datasheet PDF文件第213页浏览型号MC908AP32CFAE的Datasheet PDF文件第214页浏览型号MC908AP32CFAE的Datasheet PDF文件第215页浏览型号MC908AP32CFAE的Datasheet PDF文件第216页浏览型号MC908AP32CFAE的Datasheet PDF文件第218页浏览型号MC908AP32CFAE的Datasheet PDF文件第219页浏览型号MC908AP32CFAE的Datasheet PDF文件第220页浏览型号MC908AP32CFAE的Datasheet PDF文件第221页  
Serial Peripheral Interface Module (SPI)  
13.5.3 Transmission Format When CPHA = 1  
Figure 13-6 shows an SPI transmission in which CPHA is logic 1. The figure should not be used as a  
replacement for data sheet parametric information. Two waveforms are shown for SPSCK: one for  
CPOL = 0 and another for CPOL = 1. The diagram may be interpreted as a master or slave timing  
diagram since the serial clock (SPSCK), master in/slave out (MISO), and master out/slave in (MOSI) pins  
are directly connected between the master and the slave. The MISO signal is the output from the slave,  
and the MOSI signal is the output from the master. The SS line is the slave select input to the slave. The  
slave SPI drives its MISO output only when its slave select input (SS) is at logic 0, so that only the selected  
slave drives to the master. The SS pin of the master is not shown but is assumed to be inactive. The SS  
pin of the master must be high or must be reconfigured as general-purpose I/O not affecting the SPI. (See  
13.7.2 Mode Fault Error.) When CPHA = 1, the master begins driving its MOSI pin on the first SPSCK  
edge. Therefore, the slave uses the first SPSCK edge as a start transmission signal. The SS pin can  
remain low between transmissions. This format may be preferable in systems having only one master and  
only one slave driving the MISO data line.  
SPSCK CYCLE #  
FOR REFERENCE  
1
2
3
4
5
6
7
8
SPSCK; CPOL = 0  
SPSCK; CPOL =1  
MOSI  
MSB  
MSB  
BIT 6  
BIT 6  
BIT 5  
BIT 5  
BIT 4  
BIT 4  
BIT 3  
BIT 3  
BIT 2  
BIT 2  
BIT 1  
BIT 1  
LSB  
FROM MASTER  
MISO  
LSB  
FROM SLAVE  
SS; TO SLAVE  
CAPTURE STROBE  
Figure 13-6. Transmission Format (CPHA = 1)  
When CPHA = 1 for a slave, the first edge of the SPSCK indicates the beginning of the transmission. This  
causes the SPI to leave its idle state and begin driving the MISO pin with the MSB of its data. Once the  
transmission begins, no new data is allowed into the shift register from the transmit data register.  
Therefore, the SPI data register of the slave must be loaded with transmit data before the first edge of  
SPSCK. Any data written after the first edge is stored in the transmit data register and transferred to the  
shift register after the current transmission.  
13.5.4 Transmission Initiation Latency  
When the SPI is configured as a master (SPMSTR = 1), writing to the SPDR starts a transmission. CPHA  
has no effect on the delay to the start of the transmission, but it does affect the initial state of the SPSCK  
signal. When CPHA = 0, the SPSCK signal remains inactive for the first half of the first SPSCK cycle.  
When CPHA = 1, the first SPSCK cycle begins with an edge on the SPSCK line from its inactive to its  
active level. The SPI clock rate (selected by SPR1:SPR0) affects the delay from the write to SPDR and  
the start of the SPI transmission. (See Figure 13-7.) The internal SPI clock in the master is a free-running  
derivative of the internal MCU clock. To conserve power, it is enabled only when both the SPE and  
SPMSTR bits are set. SPSCK edges occur halfway through the low time of the internal MCU clock. Since  
the SPI clock is free-running, it is uncertain where the write to the SPDR occurs relative to the slower  
SPSCK. This uncertainty causes the variation in the initiation delay shown in Figure 13-7. This delay is  
no longer than a single SPI bit time. That is, the maximum delay is two MCU bus cycles for DIV2, eight  
MCU bus cycles for DIV8, 32 MCU bus cycles for DIV32, and 128 MCU bus cycles for DIV128.  
MC68HC908AP Family Data Sheet, Rev. 4  
214  
Freescale Semiconductor  
 复制成功!