欢迎访问ic37.com |
会员登录 免费注册
发布采购

56F826 参数 Datasheet PDF下载

56F826图片预览
型号: 56F826
PDF下载: 下载PDF文件 查看货源
内容描述: 16位数字信号控制器 [16-bit Digital Signal Controllers]
分类和应用: 控制器
文件页数/大小: 56 页 / 987 K
品牌: FREESCALE [ Freescale ]
 浏览型号56F826的Datasheet PDF文件第1页浏览型号56F826的Datasheet PDF文件第3页浏览型号56F826的Datasheet PDF文件第4页浏览型号56F826的Datasheet PDF文件第5页浏览型号56F826的Datasheet PDF文件第6页浏览型号56F826的Datasheet PDF文件第7页浏览型号56F826的Datasheet PDF文件第8页浏览型号56F826的Datasheet PDF文件第9页  
56F826 General Description  
Up to 40 MIPS at 80MHz core frequency  
One Serial Port Interface (SPI)  
DSP and MCU functionality in a unified,  
C-efficient architecture  
One additional SPI or two optional Serial  
Communication Interfaces (SCI)  
Hardware DO and REP loops  
One Synchronous Serial Interface (SSI)  
One General Purpose Quad Timer  
JTAG/OnCEfor debugging  
100-pin LQFP Package  
MCU-friendly instruction set supports both DSP  
and controller functions: MAC, bit manipulation  
unit, 14 addressing modes  
31.5K × 16-bit words (64KB) Program Flash  
512 × 16-bit words (1KB) Program RAM  
2K × 16-bit words (4KB) Data Flash  
4K × 16-bit words (8KB) Data RAM  
2K × 16-bit words (4KB) BootFLASH  
16 dedicated and 30 shared GPIO  
Time-of-Day (TOD) Timer  
Up to 64K × 16-bit words each of external memory  
expansion for Program and Data memory  
EXTBOOT  
IRQB  
RESET  
IRQA  
V
V
SSIO  
V
V
SS  
V
V
SSA  
DDIO  
DD  
DDA  
6
3
4
4
4
Low Voltage Supervisor  
JTAG/  
OnCE  
Port  
Analog Reg  
TOD  
Timer  
Data ALU  
16 x 16 + 36 36-Bit MAC  
Three 16-bit Input Registers  
Two 36-bit Accumulators  
Address  
Generation  
Unit  
Bit  
Program Controller  
and  
Hardware Looping Unit  
Interrupt  
Controller  
Manipulation  
Unit  
Program Memory  
32252 x 16 Flash  
512 x 16 SRAM  
PAB  
PDB  
Quad Timer  
or  
GPIO  
CLKO  
PLL  
16-Bit  
56800  
Core  
4
XTAL  
Boot Flash  
2048 x 16 Flash  
Clock Gen  
EXTAL  
XDB2  
CGDB  
XAB1  
XAB2  
Data Memory  
2048 x 16 Flash  
4096 x 16 SRAM  
SSI  
or  
GPIO  
6
INTERRUPT  
CONTROLS  
IPBB  
CONTROLS  
16  
SCI0 & SCI1  
External  
Address Bus  
Switch  
16  
A[00:15]  
or  
GPIO  
COP  
or  
RESET  
SPI0  
COP/  
Watchdog  
4
16  
16  
External  
Data Bus  
Switch  
SPI1  
or  
GPIO  
External  
Bus  
Interface  
Unit  
MODULE CONTROLS  
D[00:15]  
Applica-  
tion-Specific  
Memory &  
Peripherals  
IPBus Bridge  
(IPBB)  
4
ADDRESS BUS [8:0]  
DATA BUS [15:0]  
PS Select[0]  
DS Select[1]  
WR Enable  
RD Enable  
Bus  
Control  
Dedicated  
GPIO  
16  
56F826 Block Diagram  
56F826 Technical Data, Rev. 14  
Freescale Semiconductor  
3
Part 1 Overview  
1.1 56F826 Features  
1.1.1  
Processing Core  
Efficient 16-bit 56800 family controller engine with dual Harvard architecture  
As many as 40 Million Instructions Per Second (MIPS) at 80MHz core frequency  
Single-cycle 16 × 16-bit parallel Multiplier-Accumulator (MAC)  
Two 36-bit accumulators, including extension bits  
16-bit bidirectional barrel shifter  
Parallel instruction set with unique processor addressing modes  
Hardware DO and REP loops  
Three internal address buses and one external address bus  
Four internal data buses and one external data bus  
Instruction set supports both DSP and controller functions  
Controller-style addressing modes and instructions for compact code  
Efficient C Compiler and local variable support  
Software subroutine and interrupt stack with depth limited only by memory  
JTAG/OnCE Debug Programming Interface  
1.1.2  
Memory  
Harvard architecture permits as many as three simultaneous accesses to Program and Data memory  
On-chip memory including a low-cost, high-volume Flash solution  
— 31.5K × 16-bit words of Program Flash  
— 512 × 16-bit words of Program RAM  
— 2K × 16-bit words of Data Flash  
— 4K × 16-bit words of Data RAM  
— 2K × 16-bit words of BootFLASH  
Off-chip memory expansion capabilities programmable for 0, 4, 8, or 12 wait states  
— As much as 64K × 16-bit Data memory  
— As much as 64K × 16-bit Program memory  
1.1.3  
Peripheral Circuits for 56F826  
One General Purpose Quad Timer totalling 7 pins  
One Serial Peripheral Interface with 4 pins (or four additional GPIO lines)  
One Serial Peripheral Interface, or multiplexed with two Serial Communications Interfaces  
totalling 4 pins  
Synchronous Serial Interface (SSI) with configurable six-pin port (or six additional GPIO lines)  
56F826 Technical Data, Rev. 14  
4
Freescale Semiconductor  
56F826 Description  
Sixteen (16) dedicated General Purpose I/O (GPIO) pins  
Thirty (30) shared General Purpose I/O (GPIO) pins  
Computer-Operating Properly (COP) Watchdog timer  
Two external interrupt pins  
External reset pin for hardware reset  
JTAG/On-Chip Emulation (OnCE™) for unobtrusive, processor speed-independent debugging  
Software-programmable, Phase Locked Loop-based frequency synthesizer for the controller core clock  
Fabricated in high-density EMOS with 5V-tolerant, TTL-compatible digital inputs  
One Time of Day module  
1.1.4  
Energy Information  
Dual power supply, 3.3V and 2.5V  
Wait and Multiple Stop modes available  
1.2 56F826 Description  
The 56F826 is a member of the 56800 core-based family of processors. It combines, on a single chip, the  
processing power of a DSP and the functionality of a microcontroller with a flexible set of peripherals to  
create an extremely cost-effective solution for general purpose applications. Because of its low cost,  
configuration flexibility, and compact program code, the 56F826 is well-suited for many applications.  
The 56F826 includes many peripherals that are especially useful for applications such as: noise  
suppression, ID tag readers, sonic/subsonic detectors, security access devices, remote metering, sonic  
alarms, POS terminals, feature phones.  
The 56800 core is based on a Harvard-style architecture consisting of three execution units operating in  
parallel, allowing as many as six operations per instruction cycle. The microprocessor-style programming  
model and optimized instruction set allow straightforward generation of efficient, compact code for both  
DSP and MCU applications. The instruction set is also highly efficient for C/C++ Compilers to enable  
rapid development of optimized control applications.  
The 56F826 supports program execution from either internal or external memories. Two data operands can  
be accessed from the on-chip Data RAM per instruction cycle. The 56F826 also provides two external  
dedicated interrupt lines, and up to 46 General Purpose Input/Output (GPIO) lines, depending on  
peripheral configuration.  
The 56F826 controller includes 31.5K words (16-bit) of Program Flash and 2K words of Data Flash (each  
programmable through the JTAG port) with 512 words of Program RAM, and 4K words of Data RAM. It  
also supports program execution from external memory.  
The 56F826 incorporates a total of 2K words of Boot Flash for easy customer-inclusion of  
field-programmable software routines that can be used to program the main Program and Data Flash  
memory areas. Both Program and Data Flash memories can be independently bulk-erased or erased in page  
sizes of 256 words. The Boot Flash memory can also be either bulk- or page-erased.  
56F826 Technical Data, Rev. 14  
Freescale Semiconductor  
5
This controller also provides a full set of standard programmable peripherals including one Synchronous  
Serial Interface (SSI), one Serial Peripheral Interface (SPI), the option to select a second SPI or two Serial  
Communications Interfaces (SCIs), and one Quad Timer. The SSI, SPI, and Quad Timer can be used as  
General Purpose Input/Outputs (GPIOs) if a timer function is not required.  
1.3 Award-Winning Development Environment  
Processor ExpertTM (PE) provides a Rapid Application Design (RAD) tool that combines easy-to-use  
component-based software application creation with an expert knowledge system.  
The Code Warrior Integrated Development Environment is a sophisticated tool for code navigation,  
compiling, and debugging. A complete set of evaluation modules (EVMs) and development system cards  
will support concurrent engineering. Together, PE, Code Warrior and EVMs create a complete, scalable  
tools solution for easy, fast, and efficient development.  
1.4 Product Documentation  
The four documents listed in Table 1-1 are required for a complete description and proper design with the  
56F826. Documentation is available from local Freescale distributors, Freescale Semiconductor sales  
offices, Freescale Literature Distribution Centers, or online at www.freescale.com.  
Table 1-1 56F826 Chip Documentation  
Topic  
Description  
Order Number  
56800EFM  
56800E  
Detailed description of the 56800 family architecture,  
and 16-bit core processor and the instruction set  
Family Manual  
DSP56F826/F827  
User’s Manual  
Detailed description of memory, peripherals, and  
interfaces of the 56F826 and 56F827  
DSP56F826-827UM  
DSP56F826  
56F826  
Technical Data Sheet  
Electrical and timing specifications, pin descriptions,  
and package descriptions (this document)  
56F826  
Product Brief  
Summary description and block diagram of the 56F826  
core, memory, peripherals and interfaces  
DSP56F826PB  
DSP56F826E  
56F826  
Errata  
Details any chip issues that might be present  
56F826 Technical Data, Rev. 14  
6
Freescale Semiconductor  
Data Sheet Conventions  
1.5 Data Sheet Conventions  
This data sheet uses the following conventions:  
OVERBAR  
This is used to indicate a signal that is active when pulled low. For example, the RESET pin is  
active when low.  
“asserted”  
“deasserted”  
Examples:  
A high true (active high) signal is high or a low true (active low) signal is low.  
A high true (active high) signal is low or a low true (active low) signal is high.  
Voltage1  
Signal/Symbol  
Logic State  
True  
Signal State  
Asserted  
PIN  
PIN  
PIN  
PIN  
VIL/VOL  
False  
Deasserted  
Asserted  
VIH/VOH  
VIH/VOH  
VIL/VOL  
True  
False  
Deasserted  
1. Values for VIL, VOL, VIH, and VOH are defined by individual product specifications.  
56F826 Technical Data, Rev. 14  
Freescale Semiconductor  
7
Part 2 Signal/Connection Descriptions  
2.1 Introduction  
The input and output signals of the 56F826 are organized into functional groups, as shown in Table 2-1  
and as illustrated in Figure 2-1. Table 2-1 describes the signal or signals present on a pin.  
Table 2-1 Functional Group Pin Allocations  
Functional Group  
Power (VDD, VDDIO or VDDA  
Ground (VSS, VSSIO or VSSA  
Number of Pins  
(3,4,1)  
)
)
(3,4,1)  
PLL and Clock  
Address Bus1  
3
16  
Data Bus1  
16  
Bus Control  
4
4
Quad Timer Module Ports1  
JTAG/On-Chip Emulation (OnCE)  
6
16  
6
Dedicated General Purpose Input/Output  
Synchronous Serial Interface (SSI) Port1  
Serial Peripheral Interface (SPI) Port1  
4
Serial Communications Interface (SCI) Ports  
4
5
Interrupt and Program Control  
1. Alternately, GPIO pins  
56F826 Technical Data, Rev. 14  
8
Freescale Semiconductor  
Introduction  
VDD  
VDDA  
VDDIO  
VSS  
2.5V Power  
3.3V Analog Power  
3.3V Power  
GPIOB0–7  
GPIOD0–7  
3
8
8
Dedicated  
GPIO  
1
4
Ground  
4*  
1
SRD (GPIOC0)  
SRFS (GPIOC1)  
SRCK (GPIOC2)  
STD (GPIOC3)  
STFS (GPIOC4)  
STCK (GPIOC5)  
VSSA  
VSSIO  
1
1
1
1
1
1
Analog Ground  
Ground  
4
SSI Port  
or GPIO  
56F826  
EXTAL  
XTAL (CLOCKIN)  
CLKO  
PLL  
and  
Clock  
1
1
1
SCLK (GPIOF4)  
MOSI (GPIOF5)  
MISO (GPIOF6)  
SS (GPIOF7)  
1
1
1
1
SPI1 Port  
or GPIO  
A0-A7 (GPIOE)  
A8-A15 (GPIOA)  
8
8
External  
Address Bus or  
GPIO  
External Data  
Bus  
D0–D15  
TXD0 (SCLK0)  
RXD0 (MOSI0)  
TXD1 (MISO0)  
RXD1 (SS0)  
1
1
1
1
16  
SCI0,SCI1  
Port or  
SPI0 Port  
PS  
DS  
1
1
1
1
External  
Bus Control  
RD  
WR  
TA0 (GPIOF0)  
TA1 (GPIOF1)  
TA2 (GPIOF2)  
TA3 (GPIOF3)  
1
1
1
1
Quad Timer A  
or GPIO  
TCK  
TMS  
TDI  
1
1
1
1
1
1
JTAG/OnCE™  
Port  
IRQA  
TDO  
TRST  
DE  
1
1
1
1
IRQB  
Interrupt/  
Program  
Control  
RESET  
EXTBOOT  
*Includes TCS pin, which is reserved for factory use and is tied to VSS  
1
Figure 2-1 56F826 Signals Identified by Functional Group  
1. Alternate pin functionality is shown in parentheses.  
56F826 Technical Data, Rev. 14  
Freescale Semiconductor  
9
2.2 Signals and Package Information  
All inputs have a weak internal pull-up circuit associated with them. These pull-up circuits are always  
enabled. Exceptions:  
1. When a pin is owned by GPIO, then the pull-up may be disabled under software control.  
2. TCK has a weak pull-down circuit always active.  
Table 2-1 56F826 Signal and Package Information for the 100 Pin LQFP  
Signal  
Name  
Pin No.  
Type  
Description  
VDD  
20  
64  
94  
59  
VDD  
VDD  
Power—These pins provide power to the internal structures of the chip, and are  
generally connected to a 2.5V supply.  
VDD  
VDD  
VDD  
VDDA  
VDDA  
Analog Power—This pin is a dedicated power pin for the analog portion of the  
chip and should be connected to a low-noise 3.3V supply.  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VSS  
5
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VSS  
Power In/Out—These pins provide power to the I/O structures of the chip, and  
are generally connected to a 3.3V supply.  
30  
57  
80  
19  
63  
95  
60  
6
GND—These pins provide grounding for the internal structures of the chip. All  
should be attached to VSS.  
VSS  
VSS  
VSS  
VSS  
VSSA  
VSSIO  
VSSIO  
VSSIO  
VSSIO  
TCS  
VSSA  
VSSIO  
VSSIO  
VSSIO  
VSSIO  
Analog Ground—This pin supplies an analog ground.  
GND In/Out—These pins provide grounding for the I/O ring on the chip. All  
should be attached to VSS.  
31  
58  
81  
99  
Input/Output  
(Schmitt)  
TCS—This pin is reserved for factory use. It must be tied to VSS for normal use.  
In block diagrams, this pin is considered an additional VSS.  
EXTAL  
61  
Input  
External Crystal Oscillator Input—This input should be connected to a 4MHz  
external crystal or ceramic resonator. For more information, please refer to  
Section 3.6.  
56F826 Technical Data, Rev. 14  
10  
Freescale Semiconductor  
Signals and Package Information  
Table 2-1 56F826 Signal and Package Information for the 100 Pin LQFP (Continued)  
Signal  
Name  
Pin No.  
Type  
Description  
XTAL  
62  
Output  
Crystal Oscillator Output—This output connects the internal crystal oscillator  
output to an external crystal or ceramic resonator. If an external clock source  
over 4MHz is used, XTAL must be used as the input and EXTAL connected to  
VSS. For more information, please refer to Section 3.6.3.  
External Clock Input—This input should be asserted when using an external  
clock or ceramic resonator.  
(CLOCKIN)  
CLKO  
Input  
65  
Output  
Clock Output—This pin outputs a buffered clock signal. By programming the  
CLKO Select Register (CLKOSR), the user can select between outputting a  
version of the signal applied to XTAL and a version of the device master clock at  
the output of the PLL. The clock frequency on this pin can be disabled by  
programming the CLKO Select Register (CLKOSR).  
A0  
(GPIOE0)  
24  
23  
22  
21  
18  
17  
16  
15  
Output  
Address Bus—A0–A7 specify the address for external program or data memory  
accesses.  
A1  
(GPIOE1)  
Input/Output  
Port E GPIO—These eight General Purpose I/O (GPIO) pins can be individually  
programmed as input or output pins.  
A2  
(GPIOE2)  
After reset, the default state is Address Bus.  
A3  
(GPIOE3)  
A4  
(GPIOE4)  
A5  
(GPIOE5)  
A6  
(GPIOE6)  
A7  
(GPIOE7)  
56F826 Technical Data, Rev. 14  
Freescale Semiconductor  
11  
Table 2-1 56F826 Signal and Package Information for the 100 Pin LQFP (Continued)  
Signal  
Name  
Pin No.  
Type  
Description  
A8  
14  
Output  
Address Bus—A8–A15 specify the address for external program or data  
(GPIOA0)  
memory accesses.  
A9  
(GPIOA1)  
13  
12  
11  
10  
9
Input/Output  
Port A GPIO—These eight General Purpose I/O (GPIO) pins can be individually  
programmed as input or output pins.  
A10  
(GPIOA2)  
After reset, the default state is Address Bus.  
A11  
(GPIOA3)  
A12  
(GPIOA4)  
A13  
(GPIOA5)  
A14  
8
(GPIOA6)  
A15  
7
(GPIOA7)  
D0  
D1  
34  
35  
36  
37  
38  
39  
40  
41  
42  
43  
44  
46  
47  
48  
49  
50  
29  
Input/Output  
Data Bus— D0–D15 specify the data for external program or data memory  
accesses. D0–D15 are tri-stated when the external bus is inactive.  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
D12  
D13  
D14  
D15  
PS  
Output  
Output  
Program Memory Select—PS is asserted low for external program memory  
access.  
DS  
28  
Data Memory Select—DS is asserted low for external data memory access.  
56F826 Technical Data, Rev. 14  
12  
Freescale Semiconductor  
Signals and Package Information  
Table 2-1 56F826 Signal and Package Information for the 100 Pin LQFP (Continued)  
Signal  
Name  
Pin No.  
Type  
Description  
RD  
26  
Output  
Read Enable—RD is asserted during external memory read cycles. When RD is  
asserted low, pins D0–D15 become inputs and an external device is enabled  
onto the device data bus. When RD is deasserted high, the external data is  
latched inside the device. When RD is asserted, it qualifies the A0–A15, PS, and  
DS pins. RD can be connected directly to the OE pin of a Static RAM or ROM.  
WR  
27  
Output  
Write Enable—WR is asserted during external memory write cycles. When WR  
is asserted low, pins D0–D15 become outputs and the device puts data on the  
bus. When WR is deasserted high, the external data is latched inside the  
external device. When WR is asserted, it qualifies the A0–A15, PS, and DS pins.  
WR can be connected directly to the WE pin of a Static RAM.  
TA0  
(GPIOF0)  
91  
90  
Input/Output  
Input/Output  
TA0–3—Timer A Channels 0, 1, 2, and 3  
Port F GPIO—These four General Purpose I/O (GPIO) pins can be individually  
programmed as input or output.  
TA1  
(GPIOF1)  
After reset, the default state is Quad Timer.  
TA2  
89  
(GPIOF2)  
TA3  
88  
(GPIOF3)  
TCK  
100  
Input  
(Schmitt)  
Test Clock Input—This input pin provides a gated clock to synchronize the test  
logic and shift serial data to the JTAG/OnCE port. The pin is connected internally  
to a pull-down resistor.  
TMS  
1
Input  
(Schmitt)  
Test Mode Select Input—This input pin is used to sequence the JTAG TAP  
controller’s state machine. It is sampled on the rising edge of TCK and has an  
on-chip pull-up resistor.  
Note: Always tie the TMS pin to VDD through a 2.2K resistor.  
TDI  
TDO  
TRST  
2
3
4
Input  
(Schmitt)  
Test Data Input—This input pin provides a serial input data stream to the  
JTAG/OnCE port. It is sampled on the rising edge of TCK and has an on-chip  
pull-up resistor.  
Output  
Test Data Output—This tri-statable output pin provides a serial output data  
stream from the JTAG/OnCE port. It is driven in the Shift-IR and Shift-DR  
controller states, and changes on the falling edge of TCK.  
Input  
(Schmitt)  
Test Reset—As an input, a low signal on this pin provides a reset signal to the  
JTAG TAP controller. To ensure complete hardware reset, TRST should be  
asserted whenever RESET is asserted. The only exception occurs in a  
debugging environment when a hardware device reset is required and it is  
necessary not to reset the JTAG/OnCE module. In this case, assert RESET, but  
do not assert TRST. TRST must always be asserted at power-up.  
Note: For normal operation, connect TRST directly to VSS. If the design is to be used  
in a debugging environment, TRST may be tied to VSS through a 1K resistor.  
DE  
98  
Output  
Debug Event—DE provides a low pulse on recognized debug events.  
56F826 Technical Data, Rev. 14  
Freescale Semiconductor  
13  
Table 2-1 56F826 Signal and Package Information for the 100 Pin LQFP (Continued)  
Signal  
Name  
Pin No.  
Type  
Description  
GPIOB0  
GPIOB1  
GPIOB2  
GPIOB3  
GPIOB4  
GPIOB5  
GPIOB6  
GPIOB7  
GPIOD0  
GPIOD1  
GPIOD2  
GPIOD3  
GPIOD4  
GPIOD5  
GPIOD6  
GPIOD7  
SRD  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
82  
83  
51  
Input or  
Output  
Port B GPIO—These eight dedicated General Purpose I/O (GPIO) pins can be  
individually programmed as input or output pins.  
After reset, the default state is GPIO input.  
Input or  
Output  
Port D GPIO—These eight dedicated GPIO pins can be individually  
programmed as an input or output pins.  
After reset, the default state is GPIO input.  
Input/Output  
Input/Output  
SSI Receive Data (SRD)—This input pin receives serial data and transfers the  
data to the SSI Receive Shift Receiver.  
(GPIOC0)  
SRFS  
Port C GPIO—This is a General Purpose I/O (GPIO) pin with the capability of  
being individually programmed as input or output.  
After reset, the default state is GPIO input.  
52  
Input/ Output SSI Serial Receive Frame Sync (SRFS)—This bidirectional pin is used by the  
receive section of the SSI as frame sync I/O or flag I/O. The STFS can be used  
only by the receiver. It is used to synchronize data transfer and can be an input  
or an output.  
(GPIOC1)  
Input/Output  
Port C GPIO—This is a General Purpose I/O (GPIO) pin with the capability of  
being individually programmed as input or output.  
After reset, the default state is GPIO input.  
56F826 Technical Data, Rev. 14  
14  
Freescale Semiconductor  
Signals and Package Information  
Table 2-1 56F826 Signal and Package Information for the 100 Pin LQFP (Continued)  
Signal  
Name  
Pin No.  
Type  
Description  
SRCK  
53  
Input/Output  
SSI Serial Receive Clock (SRCK)—This bidirectional pin provides the serial bit  
rate clock for the Receive section of the SSI. The clock signal can be continuous  
or gated and can be used by both the transmitter and receiver in synchronous  
mode.  
(GPIOC2)  
Input/Output  
Port C GPIO—This is a General Purpose I/O (GPIO) pin with the capability of  
being individually programmed as input or output.  
After reset, the default state is GPIO input.  
STD  
54  
55  
Output  
SSI Transmit Data (STD)—This output pin transmits serial data from the SSI  
Transmitter Shift Register.  
(GPIOC3)  
Input/Output  
Port C GPIO—This is a General Purpose I/O (GPIO) pin with the capability of  
being individually programmed as input or output.  
After reset, the default state is GPIO input.  
STFS  
Input  
SSI Serial Transmit Frame Sync (STFS)—This bidirectional pin is used by the  
Transmit section of the SSI as frame sync I/O or flag I/O. The STFS can be used  
by both the transmitter and receiver in synchronous mode. It is used to  
synchronize data transfer and can be an input or output pin.  
(GPIOC4)  
STCK  
Input/Output  
Port C GPIO—This is a General Purpose I/O (GPIO) pin with the capability of  
being individually programmed as input or output.  
After reset, the default state is GPIO input.  
56  
Input/ Output SSI Serial Transmit Clock (STCK)—This bidirectional pin provides the serial bit  
rate clock for the transmit section of the SSI. The clock signal can be continuous  
or gated. It can be used by both the transmitter and receiver in synchronous  
mode.  
(GPIOC5)  
Input/Output  
Port C GPIO—This is a General Purpose I/O (GPIO) pin with the capability of  
being individually programmed as input or output.  
After reset, the default state is GPIO input.  
SCLK  
84  
85  
Input/Output  
Input/Output  
SPI Serial Clock—In master mode, this pin serves as an output, clocking slaved  
listeners. In slave mode, this pin serves as the data clock input.  
(GPIOF4)  
Port F GPIO—This General Purpose I/O (GPIO) pin can be individually  
programmed as input or output.  
After reset, the default state is SCLK.  
MOSI  
Input/Output  
Input/Output  
SPI Master Out/Slave In (MOSI)—This serial data pin is an output from a  
master device and an input to a slave device. The master device places data on  
the MOSI line a half-cycle before the clock edge that the slave device uses to  
latch the data.  
(GPIOF5)  
Port F GPIO—This General Purpose I/O (GPIO) pin can be individually  
programmed as input or output.  
56F826 Technical Data, Rev. 14  
Freescale Semiconductor  
15  
Table 2-1 56F826 Signal and Package Information for the 100 Pin LQFP (Continued)  
Signal  
Name  
Pin No.  
Type  
Description  
MISO  
86  
Input/Output  
SPI Master In/Slave Out (MISO)—This serial data pin is an input to a master  
device and an output from a slave device. The MISO line of a slave device is  
placed in the high-impedance state if the slave device is not selected.  
(GPIOF6)  
Input/Output  
Port F GPIO—This General Purpose I/O (GPIO) pin can be individually  
programmed as input or output.  
After reset, the default state is MISO.  
SS  
87  
Input  
SPI Slave Select—In master mode, this pin is used to arbitrate multiple masters.  
In slave mode, this pin is used to select the slave.  
(GPIOF7)  
Input/Output  
Port F GPIO—This General Purpose I/O (GPIO) pin can be individually  
programmed as input or output.  
After reset, the default state is SS.  
TXD0  
97  
96  
Output  
Transmit Data (TXD0)—transmit data output  
(SCLK0)  
Input/Output  
SPI Serial Clock—In master mode, this pin serves as an output, clocking slaved  
listeners. In slave mode, this pin serves as the data clock input.  
After reset, the default state is SCI output.  
RXD0  
Input  
Receive Data (RXD0)— receive data input  
(MOSI0)  
Input/Output  
SPI Master Out/Slave In—This serial data pin is an output from a master  
device, and an input to a slave device. The master device places data on the  
MOSI line one half-cycle before the clock edge the slave device uses to latch the  
data.  
After reset, the default state is SCI input.  
TXD1  
93  
92  
Output  
Transmit Data (TXD1)—transmit data output  
(MISO0)  
Input/Output  
SPI Master In/Slave Out—This serial data pin is an input to a master device and  
an output from a slave device. The MISO line of a slave device is placed in the  
high-impedance state if the slave device is not selected.  
After reset, the default state is SCI output.  
RXD1  
(SS0)  
Input  
(Schmitt)  
Receive Data (RXD1)— receive data input  
Input  
SPI Slave Select—In master mode, this pin is used to arbitrate multiple masters.  
In slave mode, this pin is used to select the slave.  
After reset, the default state is SCI input.  
56F826 Technical Data, Rev. 14  
16  
Freescale Semiconductor  
Signals and Package Information  
Table 2-1 56F826 Signal and Package Information for the 100 Pin LQFP (Continued)  
Signal  
Name  
Pin No.  
Type  
Description  
IRQA  
32  
Input  
(Schmitt)  
External Interrupt Request A—The IRQA input is a synchronized external  
interrupt request that indicates that an external device is requesting service. It  
can be programmed to be level-sensitive or negative-edge-triggered. If  
level-sensitive triggering is selected, an external pull-up resistor is required for  
wired-OR operation.  
If the processor is in the Stop state and IRQA is asserted, the processor will exit  
the Stop state.  
IRQB  
33  
45  
Input  
(Schmitt)  
External Interrupt Request B—The IRQB input is an external interrupt request  
that indicates that an external device is requesting service. It can be  
programmed to be level-sensitive or negative-edge-triggered. If level-sensitive  
triggering is selected, an external pull-up resistor is required for wired-OR  
operation.  
RESET  
Input  
(Schmitt)  
Reset—This input is a direct hardware reset on the processor. When RESET is  
asserted low, the device is initialized and placed in the Reset state. A Schmitt  
trigger input is used for noise immunity. When the RESET pin is deasserted, the  
initial chip operating mode is latched from the external boot pin. The internal  
reset signal will be deasserted synchronous with the internal clocks, after a fixed  
number of internal clocks.  
To ensure complete hardware reset, RESET and TRST should be asserted  
together. The only exception occurs in a debugging environment when a  
hardware device reset is required and it is necessary not to reset the  
OnCE/JTAG module. In this case, assert RESET, but do not assert TRST.  
EXTBOOT  
25  
Input  
External Boot—This input is tied to VDD to force device to boot from off-chip  
(Schmitt)  
memory. Otherwise, it is tied to ground.  
56F826 Technical Data, Rev. 14  
Freescale Semiconductor  
17  
Part 3 Specifications  
3.1 General Characteristics  
The 56F826 is fabricated in high-density CMOS with 5V-tolerant TTL-compatible digital inputs. The term  
5V-tolerant” refers to the capability of an I/O pin, built on a 3.3V-compatible process technology, to  
withstand a voltage up to 5.5V without damaging the device. Many systems have a mixture of devices  
designed for 3.3V and 5V power supplies. In such systems, a bus may carry both 3.3V- and 5V-compatible  
I/O voltage levels. A standard 3.3V I/O is designed to receive a maximum voltage of 3.3V ± 10% during  
normal operation without causing damage. This 5V-tolerant capability, therefore, offers the power savings  
of 3.3V I/O levels while being able to receive 5V levels without being damaged.  
Absolute maximum ratings given in Table 3-1 are stress ratings only, and functional operation at the  
maximum is not guaranteed. Stress beyond these ratings may affect device reliability or cause permanent  
damage to the device.  
The 56F826 DC/AC electrical specifications are preliminary and are from design simulations. These  
specifications may not be fully tested or guaranteed at this early stage of the product life cycle. Finalized  
specifications will be published after complete characterization and device qualifications have been  
completed.  
CAUTION  
This device contains protective circuitry to guard against  
damage due to high static voltage or electrical fields.  
However, normal precautions are advised to avoid  
application of any voltages higher than maximum rated  
voltages to this high-impedance circuit. Reliability of  
operation is enhanced if unused inputs are tied to an  
appropriate voltage level.  
56F826 Technical Data, Rev. 14  
18  
Freescale Semiconductor  
General Characteristics  
Table 3-1 Absolute Maximum Ratings  
Characteristic  
Symbol  
Min  
Max  
VSS + 3.0  
Unit  
1
Supply voltage, core  
V
VDD  
VSS – 0.3  
2
Supply voltage, IO  
VDDIO  
VSSIO – 0.3  
VSSA – 0.3  
V
SSIO + 4.0  
V
V
2
Supply voltage, Analog  
VDDA  
VSSA + 4.0  
VIN  
VSSIO – 0.3  
VSSA – 0.3  
VSSIO + 5.5  
Digital input voltages  
VINA  
VDDA + 0.3  
Analog input voltages - XTAL, EXTAL  
Voltage difference VDD to VDD_IO, VDDA  
ΔVDD  
ΔVSS  
I
- 0.3  
- 0.3  
0.3  
0.3  
10  
V
V
Voltage difference VSS to VSS _IO, VSSA  
Current drain per pin excluding VDD, VSS, VDDA, VSSA,  
VDDIO, VSSIO  
mA  
Junction temperature  
TJ  
150  
150  
°C  
°C  
Storage temperature range  
TSTG  
55  
1. VDD must not exceed VDDIO  
2. VDDIO and VDDA must not differ by more that 0.5V  
Table 3-2 Recommended Operating Conditions  
Characteristic  
Supply voltage, core  
Symbol  
VDD  
Min  
2.25  
3.0  
Typ  
2.5  
3.3  
-
Max  
2.75  
3.6  
0.1  
0.1  
85  
Unit  
V
V
Supply Voltage, IO and analog  
V
DDIO,VDDA  
Voltage difference VDD to VDD_IO, VDDA  
Voltage difference VSS to VSS _IO, VSSA  
ΔVDD  
-0.1  
-0.1  
–40  
V
ΔVSS  
-
V
Ambient operating temperature  
TA  
°C  
56F826 Technical Data, Rev. 14  
Freescale Semiconductor  
19  
6
Table 3-3 Thermal Characteristics  
Value  
Characteristic  
Symbol  
Unit  
Notes  
Comments  
100-pin LQFP  
Junction to ambient  
Natural convection  
RθJA  
48.3  
°C/W  
2
Junction to ambient (@1m/sec)  
RθJMA  
43.9  
40.7  
°C/W  
°C/W  
2
Junction to ambient  
Natural convection  
Four layer board (2s2p)  
RθJMA  
(2s2p)  
1.2  
Junction to ambient (@1m/sec) Four layer board (2s2p)  
Junction to case  
RθJMA  
RθJC  
ΨJT  
38.6  
13.5  
°C/W  
°C/W  
°C/W  
W
1,2  
3
Junction to center of case  
I/O pin power dissipation  
1.0  
4, 5  
P I/O  
User Determined  
P D = (IDD x VDD + P I/O  
(TJ - TA) /RθJA  
Power dissipation  
P D  
)
W
Junction to center of case  
PDMAX  
W
7
Notes:  
1. Theta-JA determined on 2s2p test boards is frequently lower than would be observed in an application.  
Determined on 2s2p thermal test board.  
2. Junction to ambient thermal resistance, Theta-JA (R ) was simulated to be equivalent to the JEDEC  
θJA  
specification JESD51-2 in a horizontal configuration in natural convection. Theta-JA was also simulated on  
a thermal test board with two internal planes (2s2p, where “s” is the number of signal layers and “p” is the  
number of planes) per JESD51-6 and JESD51-7. The correct name for Theta-JA for forced convection or with  
the non-single layer boards is Theta-JMA.  
3. Junction to case thermal resistance, Theta-JC (R ), was simulated to be equivalent to the measured values  
θJC  
using the cold plate technique with the cold plate temperature used as the “case” temperature. The basic cold  
plate measurement technique is described by MIL-STD 883D, Method 1012.1. This is the correct thermal  
metric to use to calculate thermal performance when the package is being used with a heat sink.  
4. Thermal Characterization Parameter, Psi-JT (Ψ ), is the “resistance” from junction to reference point  
JT  
thermocouple on top center of case as defined in JESD51-2. Ψ is a useful value to use to estimate junction  
JT  
temperature in steady state customer environments.  
5. Junction temperature is a function of on-chip power dissipation, package thermal resistance, mounting site  
(board) temperature, ambient temperature, air flow, power dissipation of other components on the board, and  
board thermal resistance.  
6. See Section 5.1 for more details on thermal design considerations.  
7. TJ = Junction Temperature  
TA = Ambient Temperature  
56F826 Technical Data, Rev. 14  
20  
Freescale Semiconductor  
DC Electrical Characteristics  
3.2 DC Electrical Characteristics  
Table 3-4 DC Electrical Characteristics  
Operating Conditions: VSSIO=VSS = VSSA = 0V, VDDA =VDDIO=3.0–3.6V, VDD = 2.25–2.75V, TA = –40° to +85°C, CL 50pF, fop = 80MHz  
Characteristic  
Input high voltage (XTAL/EXTAL)  
Symbol  
VIHC  
VILC  
VIHS  
VILS  
VIH  
Min  
2.25  
0
Typ  
Max  
3.6  
0.5  
5.5  
0.8  
5.5  
0.8  
1
Unit  
V
Input low voltage (XTAL/EXTAL)  
V
Input high voltage (Schmitt trigger inputs)1  
2.2  
-0.3  
2.0  
-0.3  
-1  
V
Input low voltage (Schmitt trigger inputs)1  
Input high voltage (all other digital inputs)  
V
V
Input low voltage (all other digital inputs)  
VIL  
V
Input current high (pull-up/pull-down resistors disabled,  
IIH  
μA  
VIN=VDD  
)
Input current low (pull-up/pull-down resistors disabled,  
VIN=VSS  
IIL  
-1  
1
μA  
)
Input current high (with pull-up resistor, VIN=VDD  
Input current low (with pull-up resistor, VIN=VSS  
Input current high (with pull-down resistor, VIN=VDD  
)
IIHPU  
IILPU  
IIHPD  
IILPD  
-1  
-210  
20  
30  
1
-50  
180  
1
μA  
μA  
μA  
μA  
KΩ  
μA  
μA  
μA  
)
)
Input current low (with pull-down resistor, VIN=VSS  
Nominal pull-up or pull-down resistor value  
Output tri-state current low  
)
-1  
R
PU, RPD  
IOZL  
-10  
-10  
-15  
10  
10  
15  
Output tri-state current high  
2
IOZH  
IIHA  
Input current high (analog inputs, VIN=VDDA  
)
2
IILA  
-15  
15  
μA  
Input current low (analog inputs, VIN=VSSA  
Output High Voltage (at IOH)  
Output Low Voltage (at IOL)  
Output source current  
)
VOH  
VOL  
IOH  
VDD – 0.7  
0.4  
V
4
V
mA  
mA  
mA  
mA  
Output sink current  
IOL  
4
PWM pin output source current3  
PWM pin output sink current4  
IOHP  
IOLP  
10  
16  
56F826 Technical Data, Rev. 14  
Freescale Semiconductor  
21  
Table 3-4 DC Electrical Characteristics (Continued)  
Operating Conditions: VSSIO=VSS = VSSA = 0V, VDDA =VDDIO=3.0–3.6V, VDD = 2.25–2.75V, TA = –40° to +85°C, CL 50pF, fop = 80MHz  
Characteristic  
Symbol  
CIN  
Min  
Typ  
8
Max  
Unit  
pF  
Input capacitance  
Output capacitance  
COUT  
12  
pF  
5
VDD supply current  
IDDT  
Run 6  
47  
21  
75  
36  
mA  
mA  
Wait7  
Stop  
2
8
mA  
V
Low Voltage Interrupt, VDDIO power supply8  
Low Voltage Interrupt, VDD power supply9  
Power on Reset10  
VEIO  
VEIC  
2.4  
2.7  
3.0  
2.0  
2.2  
1.7  
2.4  
2.0  
V
V
VPOR  
1.  
1. Schmitt Trigger inputs are: EXTBOOT, IRQA, IRQB, RESET, TCS, TCK, TRST, TMS, TDI and RXD1  
2. Analog inputs are: ANA[0:7], XTAL and EXTAL. Specification assumes ADC is not sampling.  
3. PWM pin output source current measured with 50% duty cycle.  
4. PWM pin output sink current measured with 50% duty cycle.  
5. IDDT = IDD + IDDA (Total supply current for VDD + VDDA  
)
6. Run (operating) IDD measured using 4MHz clock source. All inputs 0.2V from rail; outputs unloaded. All ports configured as  
inputs; measured with all modules enabled.  
7. Wait IDD measured using external square wave clock source (fosc = 4MHz) into XTAL; all inputs 0.2V from rail; no DC loads;  
less than 50pF on all outputs. CL = 20pF on EXTAL; all ports configured as inputs; EXTAL capacitance linearly affects wait IDD  
measured with PLL enabled.  
;
8. This low-voltage interrupt monitors the VDDIO power supply. If VDDIO drops below VEIO, an interrupt is generated. Functionality  
of the device is guaranteed under transient conditions when VDDIO >VEIO (between the minimum specified VDDIO and the point when  
the VEIO interrupt is generated).  
9. This low-voltage interrupt monitors theVDD power supply. If VDDIO drops below VEIC, an interrupt is generated. Functionality of  
the device is guaranteed under transient conditions when VDD >VEIC (between the minimum specified VDD and the point when the  
V
EIC interrupt is generated).  
10. Poweron reset occurs whenever the VDD power supply drops below VPOR. While power is ramping up, this signal remains  
active for as long as VDD is below VPOR no matter how long the ramp-up rate is.  
56F826 Technical Data, Rev. 14  
22  
Freescale Semiconductor  
Supply Voltage Sequencing and Separation Cautions  
100  
75  
IDD Analog  
IDD Total  
IDD Digital  
50  
25  
0
20  
60  
80  
40  
Freq. (MHz)  
Figure 3-1 Maximum Run IDD vs. Frequency (see Note 6. in Table 3-4)  
3.3 Supply Voltage Sequencing and Separation Cautions  
Figure 3-2 shows two situations to avoid in sequencing the V and V  
V
supplies.  
DD  
DDIO, DDA  
3.3V  
VDDIO, VDDA  
2
Supplies Stable  
2.5V  
VDD  
1
0
Time  
Notes: 1. VDD rising before VDDIO, VDDA  
2. VDDIO, VDDA rising much faster than VDD  
Figure 3-2 Supply Voltage Sequencing and Separation Cautions  
56F826 Technical Data, Rev. 14  
Freescale Semiconductor  
23  
V
should not be allowed to rise early (1). This is usually avoided by running the regulator for the V  
DD  
DD  
supply (2.5V) from the voltage generated by the 3.3V V  
supply, see Figure 3-3. This keeps V from  
DDIO  
DD  
rising faster than V  
.
DDIO  
V
should not rise so late that a large voltage difference is allowed between the two supplies (2).  
DD  
Typically this situation is avoided by using external discrete diodes in series between supplies, as shown  
in Figure 3-3. The series diodes forward bias when the difference between V and V reaches  
DDIO  
DD  
approximately 1.4, causing V to rise as V  
ramps up. When the V regulator begins proper  
DD  
DDIO  
DD  
operation, the difference between supplies will typically be 0.8V and conduction through the diode chain  
reduces to essentially leakage current. During supply sequencing, the following general relationship  
should be adhered to:  
V
> V > (V  
- 1.4V)  
DDIO  
DD  
DDIO  
In practice, V  
is typically connected directly to V  
with some filtering.  
DDA  
DDIO  
VDDIO, VDDA  
3.3V  
Regulator  
Supply  
VDD  
2.5V  
Regulator  
Figure 3-3 Example Circuit to Control Supply Sequencing  
3.4 AC Electrical Characteristics  
Timing waveforms in Section 3.4 are tested using the VIL and VIH levels specified in the DC Characteristics  
table. The levels of VIH and VIL for an input signal are shown in Figure 3-4.  
Pulse Width  
Low  
VIL  
High  
VIH  
90%  
Input Signal  
50%  
Midpoint1  
10%  
Fall Time  
Note: The midpoint is VIL + (VIH – VIL)/2.  
Rise Time  
Figure 3-4 Input Signal Measurement References  
Figure 3-5 shows the definitions of the following signal states:  
Active state, when a bus or signal is driven, and enters a low impedance state  
Tri-stated, when a bus or signal is placed in a high impedance state  
Data Valid state, when a signal level has reached VOL or VOH  
Data Invalid state, when a signal level is in transition between VOL and VOH  
56F826 Technical Data, Rev. 14  
24  
Freescale Semiconductor  
Flash Memory Characteristics  
Data2 Valid  
Data2  
Data1 Valid  
Data1  
Data3 Valid  
Data3  
Data  
Tri-stated  
Data Invalid State  
Data Active  
Data Active  
Figure 3-5 Signal States  
3.5 Flash Memory Characteristics  
Table 3-5 Flash Memory Truth Table  
XE1  
YE2  
SE3  
OE4  
PROG5  
ERASE6  
MAS17  
NVSTR8  
Mode  
Standby  
Read  
L
L
H
H
L
L
H
L
L
L
L
H
L
L
L
L
L
H
L
L
L
L
L
L
L
L
H
L
L
H
H
H
H
Word Program  
Page Erase  
Mass Erase  
L
H
H
H
H
H
L
1. X address enable, all rows are disabled when XE = 0  
2. Y address enable, YMUX is disabled when YE = 0  
3. Sense amplifier enable  
4. Output enable, tri-state Flash data out bus when OE = 0  
5. Defines program cycle  
6. Defines erase cycle  
7. Defines mass erase cycle, erase whole block  
8. Defines non-volatile store cycle  
Table 3-6 IFREN Truth Table  
Mode  
IFREN = 1  
IFREN = 0  
Read  
Read information block  
Program information block  
Erase information block  
Erase both block  
Read main memory block  
Program main memory block  
Erase main memory block  
Erase main memory block  
Word program  
Page erase  
Mass erase  
56F826 Technical Data, Rev. 14  
Freescale Semiconductor  
25  
Table 3-7 Flash Timing Parameters  
Operating Conditions: VSS = VSSA = 0 V, VDD = VDDA = 3.0–3.6V, TA = –40° to +85°C, CL 50pF  
Characteristic  
Program time  
Symbol  
Min  
20  
Typ  
Max  
Unit  
us  
Figure  
Figure 3-6  
Figure 3-7  
Figure 3-8  
Tprog*  
Terase*  
Tme*  
Erase time  
20  
ms  
Mass erase time  
100  
10,000  
10  
ms  
Endurance1  
ECYC  
20,000  
30  
cycles  
years  
Data Retention1  
DRET  
The following parameters should only be used in the Manual Word Programming Mode  
PROG/ERASE to NVSTR set  
up time  
5
5
us  
us  
Figure 3-6,  
Figure 3-7,  
Figure 3-8  
Tnvs*  
NVSTR hold time  
Figure 3-6,  
Figure 3-7  
Tnvh*  
NVSTR hold time (mass erase)  
NVSTR to program set up time  
Recovery time  
100  
10  
1
us  
us  
us  
Figure 3-8  
Figure 3-6  
Tnvh1*  
Tpgs*  
Trcv*  
Figure 3-6,  
Figure 3-7,  
Figure 3-8  
Cumulative program  
HV period2  
3
ms  
Figure 3-6  
Thv  
Program hold time3  
Figure 3-6  
Figure 3-6  
Figure 3-6  
Tpgh  
Tads  
Tadh  
Address/data set up time3  
Address/data hold time3  
1. One cycle is equal to an erase program and read.  
2. Thv is the cumulative high voltage programming time to the same row before next erase. The same address cannot be  
programmed twice before next erase.  
3. Parameters are guaranteed by design in smart programming mode and must be one cycle or greater.  
*The Flash interface unit provides registers for the control of these parameters.  
56F826 Technical Data, Rev. 14  
26  
Freescale Semiconductor  
Flash Memory Characteristics  
IFREN  
XADR  
XE  
Tadh  
YADR  
YE  
DIN  
Tads  
PROG  
NVSTR  
Tnvs  
Tprog  
Tpgh  
Tpgs  
Tnvh  
Trcv  
Thv  
Figure 3-6 Flash Program Cycle  
IFREN  
XADR  
XE  
YE=SE=OE=MAS1=0  
ERASE  
NVSTR  
Tnvs  
Tnvh  
Trcv  
Terase  
Figure 3-7 Flash Erase Cycle  
56F826 Technical Data, Rev. 14  
Freescale Semiconductor  
27  
IFREN  
XADR  
XE  
MAS1  
YE=SE=OE=0  
ERASE  
NVSTR  
Tnvs  
Tnvh1  
Trcv  
Tme  
Figure 3-8 Flash Mass Erase Cycle  
3.6 External Clock Operation  
The 56F826 system clock can be derived from a crystal or an external system clock signal. To generate a  
reference frequency using the internal oscillator, a reference crystal must be connected between the  
EXTAL and XTAL pins.  
3.6.1  
Crystal Oscillator  
The internal oscillator is also designed to interface with a parallel-resonant crystal resonator in the  
frequency range specified for the external crystal in Table 3-9. A recommended crystal oscillator circuit  
is shown in Figure 3-9. Follow the crystal supplier’s recommendations when selecting a crystal, because  
crystal parameters determine the component values required to provide maximum stability and reliable  
start-up. The crystal and associated components should be mounted as close as possible to the EXTAL  
and XTAL pins to minimize output distortion and start-up stabilization time.The internal 56F82x  
oscillator circuitry is designed to have no external load capacitors present. As shown in Figure 3-9, no  
external load capacitors should be used.  
The 56F80x components internally are modeled as a parallel resonant oscillator circuit to provide a  
capacitive load on each of the oscillator pins (XTAL and EXTAL) of 10pF to 13pF over temperature and  
process variations. Using a typical value of internal capacitance on these pins of 12pF and a value of 3pF  
56F826 Technical Data, Rev. 14  
28  
Freescale Semiconductor  
External Clock Operation  
as a typical circuit board trace capacitance the parallel load capacitance presented to the crystal is 9pF as  
determined by the following equation:  
CL1 * CL2  
CL1 + CL2  
12 * 12  
12 + 12  
CL =  
+ Cs =  
+ 3 = 6 + 3 = 9pF  
This is the value load capacitance that should be used when selecting a crystal and determining the actual  
frequency of operation of the crystal oscillator circuit.  
Recommended External Crystal  
Parameters:  
Rz = 1 to 3MΩ  
EXTAL XTAL  
Rz  
fc = 4Mhz (optimized for 4MHz)  
fc  
Figure 3-9 Connecting to a Crystal Oscillator Circuit  
3.6.2  
Ceramic Resonator  
It is also possible to drive the internal oscillator with a ceramic resonator, assuming the overall system  
design can tolerate the reduced signal integrity. A typical ceramic resonator circuit is shown in  
Figure 3-10. Refer to supplier’s recommendations when selecting a ceramic resonator and associated  
components. The resonator and components should be mounted as close as possible to the EXTAL and  
XTAL pins. The internal 56F82x oscillator circuitry is designed to have no external load capacitors  
present. As shown in Figure 3-10, no external load capacitors should be used.  
Recommended Ceramic Resonator  
Parameters:  
Rz = 1 to 3 MΩ  
EXTAL XTAL  
Rz  
fc = 4Mhz (optimized for 4MHz)  
fc  
Figure 3-10 Connecting a Ceramic Resonator  
Note: Freescale recommends only two terminal ceramic resonators vs. three terminal resonators  
(which contain an internal bypass capacitor to ground).  
56F826 Technical Data, Rev. 14  
Freescale Semiconductor  
29  
3.6.3  
External Clock Source  
The recommended method of connecting an external clock is given in Figure 3-11. The external clock  
source is connected to XTAL and the EXTAL pin is held V  
/2.  
DDA  
56F826  
XTAL  
EXTAL  
V
/2  
External  
Clock  
DDA  
Figure 3-11 Connecting an External Clock Signal  
Table 3-8 External Clock Operation Timing Requirements  
Operating Conditions: VSSIO=VSS = VSSA = 0V, VDDA =VDDIO=3.0–3.6V, VDD = 2.25–2.75V, TA = –40° to +85°C, CL 50pF, fop = 80MHz  
Characteristic  
Symbol  
fosc  
Min  
0
Typ  
4
Max  
Unit  
MHz  
ns  
Frequency of operation (external clock driver)1  
Clock Pulse Width3, 4  
802  
tPW  
6.25  
1. See Figure 3-11 for details on using the recommended connection of an external clock driver.  
2. When using Time of Day (TOD), maximum external frequency is 6MHz.  
3. The high or low pulse width must be no smaller than 6.25ns or the chip will not function.  
4. Parameters listed are guaranteed by design.  
VIH  
External  
Clock  
90%  
50%  
10%  
90%  
50%  
10%  
tPW  
tPW  
VIL  
Note: The midpoint is VIL + (VIH – VIL)/2.  
Figure 3-12 External Clock Timing  
56F826 Technical Data, Rev. 14  
30  
Freescale Semiconductor  
External Bus Asynchronous Timing  
3.6.4  
Phase Locked Loop Timing  
Table 3-9 PLL Timing  
Operating Conditions: VSSIO = VSS = VSSA = 0V, VDDA = VDDIO = 3.0–3.6V, VDD = 2.25–2.75V, TA = –40° to +85°C, CL < 50pF, fop = 80MHz  
Characteristic  
Symbol  
fosc  
Min  
2
Typ  
4
Max  
6
Unit  
MHz  
MHz  
ms  
External reference crystal frequency for the PLL1  
PLL output frequency2  
fout/2  
tplls  
40  
1
110  
10  
PLL stabilization time 3 -40o to +85oC  
1. An externally supplied reference clock should be as free as possible from any phase jitter for the PLL to work  
correctly. The PLL is optimized for 4MHz input crystal.  
2. ZCLK may not exceed 80MHz. For additional information on ZCLK and fout/2, please refer to the OCCS chapter in the  
User Manual. ZCLK = fop  
3. This is the minimum time required after the PLL set-up is changed to ensure reliable operation.  
3.7 External Bus Asynchronous Timing  
1, 2  
Table 3-10 External Bus Asynchronous Timing  
Operating Conditions: VSSIO = VSS = VSSA = 0V, VDDA = VDDIO = 3.0–3.6V, VDD = 2.25–2.75V, TA = –40° to +85°C, CL 50pF, fop = 80MHz  
Characteristic  
Symbol  
Unit  
Min  
Max  
Address Valid to WR Asserted  
tAWR  
tWR  
6.5  
ns  
WR Width Asserted  
Wait states = 0  
Wait states > 0  
7.5  
ns  
ns  
(T*WS) + 7.5  
WR Asserted to D0–D15 Out Valid  
tWRD  
tDOH  
tDOS  
T + 4.2  
ns  
ns  
Data Out Hold Time from WR Deasserted  
4.8  
Data Out Set Up Time to WR Deasserted  
Wait states = 0  
Wait states > 0  
2.2  
ns  
ns  
(T*WS) + 6.4  
RD Deasserted to Address Not Valid  
tRDA  
0
ns  
Address Valid to RD Deasserted  
Wait states = 0  
Wait states > 0  
tARDD  
18.7  
(T*WS) + 18.7  
ns  
ns  
56F826 Technical Data, Rev. 14  
Freescale Semiconductor  
31  
1, 2  
Table 3-10 External Bus Asynchronous Timing  
(Continued)  
Operating Conditions: VSSIO = VSS = VSSA = 0V, VDDA = VDDIO = 3.0–3.6V, VDD = 2.25–2.75V, TA = –40° to +85°C, CL 50pF, fop = 80MHz  
Characteristic  
Symbol  
Unit  
Min  
Max  
Input Data Hold to RD Deasserted  
tDRD  
tRD  
0
ns  
RD Assertion Width  
Wait states = 0  
Wait states > 0  
19  
ns  
ns  
(T*WS) + 19  
Address Valid to Input Data Valid  
Wait states = 0  
Wait states > 0  
tAD  
1
ns  
ns  
(T*WS) + 1  
Address Valid to RD Asserted  
tARDA  
tRDD  
-4.4  
ns  
RD Asserted to Input Data Valid  
Wait states = 0  
Wait states > 0  
2.4  
ns  
ns  
(T*WS) + 2.4  
WR Deasserted to RD Asserted  
RD Deasserted to RD Asserted  
WR Deasserted to WR Asserted  
RD Deasserted to WR Asserted  
tWRRD  
tRDRD  
tWRWR  
tRDWR  
6.8  
0
ns  
ns  
ns  
ns  
14.1  
12.8  
1. Timing is both wait state- and frequency-dependent. In the formulas listed, WS = the number of wait states and  
T = Clock Period. For 80MHz operation, T = 12.5ns.  
2. Parameters listed are guaranteed by design.  
To calculate the required access time for an external memory for any frequency < 80Mhz, use this formula:  
Top = Clock period @ desired operating frequency  
WS = Number of wait states  
Memory Access Time = (Top*WS) + (Top- 11.5)  
56F826 Technical Data, Rev. 14  
32  
Freescale Semiconductor  
External Bus Asynchronous Timing  
A0–A15,  
PS, DS  
tARDD  
(See Note)  
tRDA  
tARDA  
tRDRD  
tRD  
tAWR  
tWRWR  
RD  
tWRRD  
tWR  
tRDWR  
WR  
tRDD  
tAD  
tDOH  
tWRD  
tDRD  
tDOS  
Data Out  
Data In  
D0–D15  
Note: During read-modify-write instructions and internal instructions, the address lines do not change state.  
Figure 3-13 External Bus Asynchronous Timing  
56F826 Technical Data, Rev. 14  
Freescale Semiconductor  
33  
3.8 Reset, Stop, Wait, Mode Select, and Interrupt Timing  
1, 5  
Table 3-11 Reset, Stop, Wait, Mode Select, and Interrupt Timing  
Operating Conditions: VSSIO = VSS = VSSA = 0V, VDDA = VDDIO = 3.0–3.6V, VDD = 2.25–2.75V, TA = –40° to +85°C, CL 50pF, fop = 80MHz  
Characteristic  
Symbol  
Min  
Max  
Unit  
See Figure  
Figure 3-14  
RESET Assertion to Address, Data and Control  
Signals High Impedance  
tRAZ  
21  
ns  
Minimum RESET Assertion Duration2  
OMR Bit 6 = 0  
OMR Bit 6 = 1  
tRA  
Figure 3-14  
275,000T  
128T  
ns  
ns  
RESET Deassertion to First External Address Output  
Edge-sensitive Interrupt Request Width  
tRDA  
tIRW  
tIDM  
33T  
1.5T  
15T  
34T  
ns  
ns  
ns  
Figure 3-14  
Figure 3-15  
Figure 3-16  
IRQA, IRQB Assertion to External Data Memory  
Access Out Valid, caused by first instruction execution  
in the interrupt service routine  
IRQA, IRQB Assertion to General Purpose Output  
Valid, caused by first instruction execution in the  
interrupt service routine  
tIG  
16T  
ns  
Figure 3-16  
Figure 3-17  
IRQA Low to First Valid Interrupt Vector Address Out  
recovery from Wait State3  
tIRI  
13T  
2T  
ns  
ns  
IRQA Width Assertion to Recover from Stop State4  
tIW  
tIF  
Figure 3-18  
Figure 3-18  
Delay from IRQA Assertion to Fetch of first instruction  
(exiting Stop)  
OMR Bit 6 = 0  
OMR Bit 6 = 1  
275,000T  
12T  
ns  
ns  
Duration for Level Sensitive IRQA Assertion to Cause  
the Fetch of First IRQA Interrupt Instruction (exiting  
Stop)  
OMR Bit 6 = 0  
OMR Bit 6 = 1  
tIRQ  
Figure 3-19  
Figure 3-19  
275,000T  
12T  
ns  
ns  
Delay from Level Sensitive IRQA Assertion to First  
Interrupt Vector Address Out Valid (exiting Stop)  
OMR Bit 6 = 0  
tII  
275,000T  
12T  
ns  
ns  
OMR Bit 6 = 1  
1. In the formulas, T = clock cycle. For an operating frequency of 80MHz, T = 12.5ns.  
2. Circuit stabilization delay is required during reset when using an external clock or crystal oscillator in two cases:  
• After power-on reset  
• When recovering from Stop state  
3. The minimum is specified for the duration of an edge-sensitive IRQA interrupt required to recover from the Stop state. This is not  
the minimum required so that the IRQA interrupt is accepted.  
4. The interrupt instruction fetch is visible on the pins only in Mode 3.  
5. Parameters listed are guaranteed by design.  
56F826 Technical Data, Rev. 14  
34  
Freescale Semiconductor  
Reset, Stop, Wait, Mode Select, and Interrupt Timing  
RESET  
tRA  
tRAZ  
tRDA  
A0–A15,  
D0–D15  
First Fetch  
PS, DS,  
RD, WR  
First Fetch  
Figure 3-14 Asynchronous Reset Timing  
IRQA,  
IRQB  
tIRW  
Figure 3-15 External Interrupt Timing (Negative-Edge-Sensitive)  
A0–A15,  
PS, DS,  
RD, WR  
First Interrupt Instruction Execution  
tIDM  
IRQA,  
IRQB  
a) First Interrupt Instruction Execution  
General  
Purpose  
I/O Pin  
tIG  
IRQA,  
IRQB  
b) General Purpose I/O  
Figure 3-16 External Level-Sensitive Interrupt Timing  
56F826 Technical Data, Rev. 14  
Freescale Semiconductor  
35  
IRQA,  
IRQB  
tIRI  
A0–A15,  
PS, DS,  
RD, WR  
First Interrupt Vector  
Instruction Fetch  
Figure 3-17 Interrupt from Wait State Timing  
tIW  
IRQA  
tIF  
A0–A15,  
PS, DS,  
RD, WR  
First Instruction Fetch  
Not IRQA Interrupt Vector  
Figure 3-18 Recovery from Stop State Using Asynchronous Interrupt Timing  
tIRQ  
IRQA  
tII  
A0–A15  
PS, DS,  
RD, WR  
First IRQA Interrupt  
Instruction Fetch  
Figure 3-19 Recovery from Stop State Using IRQA Interrupt Service  
56F826 Technical Data, Rev. 14  
36  
Freescale Semiconductor  
Serial Peripheral Interface (SPI) Timing  
3.9 Serial Peripheral Interface (SPI) Timing  
1
Table 3-12 SPI Timing  
Operating Conditions: VSSIO=VSS = VSSA = 0V, VDDA =VDDIO=3.0–3.6V, VDD = 2.25–2.75V, TA = –40° to +85°C, CL 50pF, fop = 80MHz  
Characteristic  
Symbol  
Min  
Max  
Unit  
See Figure  
Cycle time  
Master  
Slave  
tC  
Figures  
3-20, 3-21,  
3-22, 3-23  
50  
25  
ns  
ns  
Enable lead time  
Master  
Slave  
tELD  
tELG  
tCH  
tCL  
Figure 3-23  
25  
ns  
ns  
Enable lag time  
Master  
Slave  
Figure 3-23  
100  
ns  
ns  
Clock (SCLK) high time  
Master  
Slave  
ns  
ns  
Figures  
3-20, 3-21,  
3-22, 3-23  
24  
12  
Clock (SCLK) low time  
Master  
Slave  
Figures  
3-20, 3-21,  
3-22, 3-23  
24.1  
12  
ns  
ns  
Data set-up time required for inputs  
Master  
Slave  
tDS  
Figures  
3-20, 3-21,  
3-22, 3-23  
20  
0
ns  
ns  
Data hold time required for inputs  
Master  
Slave  
tDH  
Figures  
3-20, 3-21,  
3-22, 3-23  
0
2
ns  
ns  
Access time (time to data active from high-impedance state)  
Slave  
tA  
tD  
Figure 3-23  
4.8  
3.7  
15  
ns  
ns  
Disable time (hold time to high-impedance state)  
Slave  
Figure 3-23  
15.2  
Data Valid for outputs  
Master  
Slave (after enable edge)  
tDV  
Figures  
3-20, 3-21,  
3-22, 3-23  
4.5  
20.4  
ns  
ns  
Data invalid  
Master  
Slave  
tDI  
tR  
tF  
Figures  
3-20, 3-21,  
3-22, 3-23  
0
0
ns  
ns  
Rise time  
Master  
Slave  
Figures  
3-20, 3-21,  
3-22, 3-23  
11.5  
10.0  
ns  
ns  
Fall time  
Master  
Slave  
Figures  
3-20, 3-21,  
3-22, 3-23  
9.7  
9.0  
ns  
ns  
1. Parameters are guaranteed by design.  
56F826 Technical Data, Rev. 14  
Freescale Semiconductor  
37  
SS  
(Input)  
SS is held High on master  
tC  
tR  
tF  
tCL  
SCLK (CPOL = 0)  
(Output)  
tCH  
tCL  
tF  
tR  
SCLK (CPOL = 1)  
(Output)  
tDH  
tCH  
tDS  
MISO  
(Input)  
MSB in  
tDI  
Bits 14–1  
LSB in  
tDI(ref)  
tDV  
MOSI  
(Output)  
Master MSB out  
tF  
Bits 14–1  
Master LSB out  
tR  
Figure 3-20 SPI Master Timing (CPHA = 0)  
SS  
(Input)  
SS is held High on master  
tC  
tF  
tR  
tCL  
SCLK (CPOL = 0)  
(Output)  
tCH  
tCL  
tF  
SCLK (CPOL = 1)  
(Output)  
tCH  
tDS  
tDH  
tR  
MISO  
(Input)  
MSB in  
tDI  
Bits 14–1  
LSB in  
tDV  
tDV(ref)  
MOSI  
(Output)  
Master MSB out  
tF  
Bits 14– 1  
Master LSB out  
tR  
Figure 3-21 SPI Master Timing (CPHA = 1)  
56F826 Technical Data, Rev. 14  
38  
Freescale Semiconductor  
Serial Peripheral Interface (SPI) Timing  
SS  
(Input)  
tC  
tF  
tR  
tELG  
tCL  
SCLK (CPOL = 0)  
(Input)  
tCH  
tCL  
tELD  
SCLK (CPOL = 1)  
(Input)  
tF  
tCH  
tA  
tR  
tD  
MISO  
(Output)  
Slave MSB out  
Bits 14–1  
tDV  
Slave LSB out  
tDI  
tDS  
tDI  
tDH  
MOSI  
(Input)  
MSB in  
Bits 14–1  
LSB in  
Figure 3-22 SPI Slave Timing (CPHA = 0)  
SS  
(Input)  
tC  
tF  
tR  
tCL  
SCLK (CPOL = 0)  
(Input)  
tCH  
tELG  
tELD  
tCL  
SCLK (CPOL = 1)  
(Input)  
tDV  
tCH  
tR  
tD  
tF  
tA  
MISO  
(Output)  
Slave MSB out  
Bits 14–1  
tDV  
Slave LSB out  
tDS  
tDI  
tDH  
MOSI  
(Input)  
MSB in  
Bits 14–1  
LSB in  
Figure 3-23 SPI Slave Timing (CPHA = 1)  
56F826 Technical Data, Rev. 14  
Freescale Semiconductor  
39  
3.10 Synchronous Serial Interface (SSI) Timing  
1
Table 3-13 SSI Master Mode Switching Characteristics  
Operating Conditions: VSSIO = VSS = VSSA = 0V, VDDA = VDDIO = 3.0–3.6V, VDD = 2.25–2.75V, TA = –40° to +85°C, CL 50pF, fop = 80MHz  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
102  
STCK frequency  
fs  
MHz  
STCK period3  
tSCKW  
tSCKH  
tSCKL  
100  
504  
ns  
ns  
ns  
STCK high time  
504  
STCK low time  
4
Output clock rise/fall time (STCK, SRCK)  
ns  
ns  
Delay from STCK high to STFS (bl) high - Master5  
Delay from STCK high to STFS (wl) high - Master5  
Delay from SRCK high to SRFS (bl) high - Master5  
Delay from SRCK high to SRFS (wl) high - Master5  
Delay from STCK high to STFS (bl) low - Master5  
Delay from STCK high to STFS (wl) low - Master5  
Delay from SRCK high to SRFS (bl) low - Master5  
tTFSBHM  
tTFSWHM  
tRFSBHM  
tRFSWHM  
tTFSBLM  
tTFSWLM  
tRFSBLM  
tRFSWLM  
tTXEM  
0.1  
0.5  
0.1  
0.6  
0.6  
-1.0  
-1.0  
-0.1  
-0.1  
20  
0.5  
1.3  
1.3  
-0.1  
-0.1  
0
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Delay from SRCK high to SRFS (wl) low - Master5  
0
STCK high to STXD enable from high impedance - Master  
22  
STCK high to STXD valid - Master  
tTXVM  
24  
26  
STCK high to STXD not valid - Master  
STCK high to STXD high impedance - Master  
SRXD Setup time before SRCK low - Master  
SRXD Hold time after SRCK low - Master  
tTXNVM  
tTXHIM  
0.1  
24  
0.2  
25.5  
tSM  
4
tHM  
4
Synchronous Operation (in addition to standard internal clock parameters)  
SRXD Setup time before STCK low - Master  
SRXD Hold time after STCK low - Master  
tTSM  
tTHM  
4
4
1. Master mode is internally generated clocks and frame syncs  
2. Max clock frequency is IP_clk/4 = 40MHz / 4 = 10MHz for an 80MHz part.  
56F826 Technical Data, Rev. 14  
40  
Freescale Semiconductor  
Synchronous Serial Interface (SSI) Timing  
3. All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP=0 in SCR2 and RSCKP=0 in SCSR)  
and a non-inverted frame sync (TFSI=0 in SCR2 and RFSI=0 in SCSR). If the polarity of the clock and/or the frame sync have  
been inverted, all the timings remain valid by inverting the clock signal STCK/SRCK and/or the frame sync STFS/SRFS in the  
tables and in the figures.  
4. 50% duty cycle  
5. bl = bit length; wl = word length  
tSCKW  
tSCKH  
tSCKL  
STCK output  
tTFSBHM  
tTFSBLM  
STFS (bl) output  
STFS (wl) output  
tTFSWHM  
tTFSWLM  
tTXVM  
tTXEM  
tTXNVM  
tTXHIM  
First Bit  
Last Bit  
STXD  
SRCK output  
tRFSBHM  
tRFBLM  
SRFS (bl) output  
SRFS (wl) output  
tRFSWHM  
tRFSWLM  
tTSM  
tSM  
tHM  
tTHM  
SRXD  
Figure 3-24 Master Mode Timing Diagram  
56F826 Technical Data, Rev. 14  
Freescale Semiconductor  
41  
1
Table 3-14 SSI Slave Mode Switching Characteristics  
Operating Conditions: VSSIO = VSS = VSSA = 0V, VDDA = VDDIO = 3.0–3.6V, VDD = 2.25–2.75V, TA = –40° to +85°C, CL 50pF, fop = 80MHz  
Parameter  
Symbol  
fs  
Min  
Typ  
Max  
Units  
MHz  
ns  
102  
STCK frequency  
STCK period3  
tSCKW  
tSCKH  
tSCKL  
100  
504  
STCK high time  
ns  
504  
STCK low time  
ns  
Output clock rise/fall time  
TBD  
ns  
ns  
Delay from STCK high to STFS (bl) high - Slave5  
Delay from STCK high to STFS (wl) high - Slave5  
Delay from SRCK high to SRFS (bl) high - Slave5  
Delay from SRCK high to SRFS (wl) high - Slave5  
Delay from STCK high to STFS (bl) low - Slave5  
Delay from STCK high to STFS (wl) low - Slave5  
Delay from SRCK high to SRFS (bl) low - Slave5  
tTFSBHS  
tTFSWHS  
tRFSBHS  
tRFSWHS  
tTFSBLS  
tTFSWLS  
tRFSBLS  
tRFSWLS  
tTXES  
0.1  
46  
0.1  
0.1  
0.1  
-1  
46  
46  
46  
25  
25  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
-1  
-46  
-46  
Delay from SRCK high to SRFS (wl) low - Slave5  
STCK high to STXD enable from high impedance - Slave  
STCK high to STXD valid - Slave  
tTXVS  
1
STFS high to STXD enable from high impedance (first bit) -  
Slave  
tFTXES  
5.5  
STFS high to STXD valid (first bit) - Slave  
STCK high to STXD not valid - Slave  
tFTXVS  
tTXNVS  
tTXHIS  
tSS  
6
11  
11  
4
27  
13  
ns  
ns  
ns  
ns  
ns  
STCK high to STXD high impedance - Slave  
SRXD Setup time before SRCK low - Slave  
SRXD Hold time after SRCK low - Slave  
28.5  
tHS  
4
56F826 Technical Data, Rev. 14  
42  
Freescale Semiconductor  
Synchronous Serial Interface (SSI) Timing  
1
Table 3-14 SSI Slave Mode Switching Characteristics  
Operating Conditions: VSSIO = VSS = VSSA = 0V, VDDA = VDDIO = 3.0–3.6V, VDD = 2.25–2.75V, TA = –40° to +85°C, CL 50pF, fop = 80MHz  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Synchronous Operation (in addition to standard external clock parameters)  
SRXD Setup time before STCK low - Slave  
SRXD Hold time after STCK low - Slave  
tTSS  
tTHS  
4
4
1. Slave mode is externally generated clocks and frame syncs  
2. Max clock frequency is IP_clk/4 = 40MHz / 4 = 10MHz for an 80MHz part.  
3. All the timings for the SSI are given for a non-inverted serial clock polarity (TSCKP=0 in SCR2 and RSCKP=0 in SCSR)  
and a non-inverted frame sync (TFSI=0 in SCR2 and RFSI=0 in SCSR). If the polarity of the clock and/or the frame sync  
have been inverted, all the timings remain valid by inverting the clock signal STCK/SRCK and/or the frame sync STFS/SRFS  
in the tables and in the figures.  
4. 50% duty cycle  
5. bl = bit length; wl = word length  
56F826 Technical Data, Rev. 14  
Freescale Semiconductor  
43  
tSCKW  
tSCKH  
tSCKL  
STCK input  
STFS (bl) input  
STFS (wl) input  
tTFSBLS  
tTFSBHS  
tTFSWHS  
tTFSWLS  
tFTXVS  
tFTXES  
tTXVS  
tTXNVS  
tTXES  
tTXHIS  
First Bit  
Last Bit  
STXD  
SRCK input  
tRFBLS  
tRFSBHS  
SRFS (bl) input  
SRFS (wl) input  
tRFSWHS  
tRFSWLS  
tTSS  
tSS  
tHS  
tTHS  
SRXD  
Figure 3-25 Slave Mode Clock Timing  
3.11 Quad Timer Timing  
1, 2  
Table 3-15 Timer Timing  
Operating Conditions: VSSIO = VSS = VSSA = 0V, VDDA = VDDIO = 3.0–3.6V, VDD = 2.25–2.75V, TA = –40° to +85°C, CL 50pF, fop = 80MHz  
Characteristic  
Timer input period  
Symbol  
PIN  
Min  
4T+6  
2T+3  
2T  
Max  
Unit  
ns  
Timer input high/low period  
Timer output period  
PINHL  
POUT  
ns  
ns  
Timer output high/low period  
POUTHL  
1T  
ns  
1. In the formulas listed, T = clock cycle. For 80MHz operation, T = 12.5ns.  
2. Parameters listed are guaranteed by design.  
56F826 Technical Data, Rev. 14  
44  
Freescale Semiconductor  
Serial Communication Interface (SCI) Timing  
Timer Inputs  
PIN  
PINHL  
PINHL  
Timer Outputs  
POUT  
POUTHL  
POUTHL  
Figure 3-26 Quad Timer Timing  
3.12 Serial Communication Interface (SCI) Timing  
4
Table 3-16 SCI Timing  
Operating Conditions: VSSIO=VSS = VSSA = 0V, VDDA =VDDIO=3.0–3.6V, VDD = 2.25–2.75V, TA = –40° to +85°C, CL 50pF, fop = 80MHz  
Characteristic  
Baud Rate1  
Symbol  
BR  
Min  
Max  
(fMAX*2.5)/(80)  
1.04/BR  
Unit  
Mbps  
ns  
RXD2 Pulse Width  
TXD3 Pulse Width  
RXDPW  
TXDPW  
0.965/BR  
0.965/BR  
1.04/BR  
ns  
1. fMAX is the frequency of operation of the system clock in MHz.  
2. The RXD pin in SCI0 is named RXD0 and the RXD pin in SCI1 is named RXD1.  
3. The TXD pin in SCI0 is named TXD0 and the TXD pin in SCI1 is named TXD1.  
4. Parameters listed are guaranteed by design.  
RXD  
SCI receive  
data pin  
(Input)  
RXDPW  
Figure 3-27 RXD Pulse Width  
56F826 Technical Data, Rev. 14  
Freescale Semiconductor  
45  
TXD  
SCI receive  
data pin  
TXDPW  
(Input)  
Figure 3-28 TXD Pulse Width  
3.13 JTAG Timing  
1, 3  
Table 3-17 JTAG Timing  
Operating Conditions: VSSIO=VSS = VSSA = 0V, VDDA =VDDIO=3.0–3.6V, VDD = 2.25–2.75V, TA = –40° to +85°C, CL 50pF, fop = 80MHz  
Characteristic  
TCK frequency of operation2  
Symbol  
Min  
Max  
Unit  
fOP  
DC  
10  
MHz  
TCK cycle time  
tCY  
tPW  
tDS  
100  
50  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TCK clock pulse width  
TMS, TDI data set-up time  
TMS, TDI data hold time  
TCK low to TDO data valid  
TCK low to TDO tri-state  
TRST assertion time  
DE assertion time  
0.4  
1.2  
tDH  
tDV  
26.6  
23.5  
tTS  
tTRST  
tDE  
50  
4T  
1. Timing is both wait state and frequency dependent. For the values listed, T = clock cycle. For 80MHz  
operation, T = 12.5ns.  
2. TCK frequency of operation must be less than 1/8 the processor rate.  
3. Parameters listed are guaranteed by design.  
tCY  
tPW  
tPW  
VIH  
VM  
VIL  
VM  
TCK  
(Input)  
VM = VIL + (VIH – VIL)/2  
Figure 3-29 Test Clock Input Timing Diagram  
56F826 Technical Data, Rev. 14  
46  
Freescale Semiconductor  
JTAG Timing  
TCK  
(Input)  
tDS  
tDH  
TDI  
TMS  
Input Data Valid  
(Input)  
tDV  
TDO  
(Output)  
Output Data Valid  
tTS  
TDO  
(Output)  
tDV  
TDO  
(Output)  
Output Data Valid  
Figure 3-30 Test Access Port Timing Diagram  
TRST  
(Input)  
tTRST  
Figure 3-31 TRST Timing Diagram  
DE  
tDE  
Figure 3-32 OnCE—Debug Event  
56F826 Technical Data, Rev. 14  
Freescale Semiconductor  
47  
Part 4 Packaging  
4.1 Package and Pin-Out Information 56F826  
This section contains package and pin-out information for the 100-pin LQFP configuration of the 56F826.  
GPIOD1  
GPIOD0  
GPIOB7  
GPIOB6  
GPIOB5  
TMS  
TDI  
TDO  
TRST  
VDDIO  
PIN 76  
ORIENTATION  
MARK  
PIN 1  
GPIOB4  
GPIOB3  
GPIOB2  
VSSIO  
A15  
A14  
GPIOB1  
GPIOB0  
A13  
A12  
CLKO  
VDD  
A11  
A10  
VSS  
XTAL  
A9  
A8  
EXTAL  
VSSA  
VDDA  
VSSIO  
A7  
A6  
A5  
A4  
VDDIO  
STCK  
VSS  
VDD  
STFS  
STD  
SRCK  
SRFS  
A3  
A2  
A1  
A0  
PIN 51  
PIN 26  
SRD  
EXTBOOT  
Figure 4-1 Top View, 56F826 100-pin LQFP Package  
56F826 Technical Data, Rev. 14  
48  
Freescale Semiconductor  
Package and Pin-Out Information 56F826  
Table 4-1 56F826 Pin Identification by Pin Number  
Signal  
Name  
Signal  
Name  
Pin No.  
Pin No.  
Signal Name  
Pin No.  
Signal Name  
Pin No.  
1
2
3
4
5
TMS  
TDI  
26  
27  
28  
29  
30  
RD  
WR  
DS  
51  
52  
53  
54  
55  
SRD  
SRFS  
SRCK  
STD  
76  
77  
78  
79  
80  
GPIOD2  
GPIOD3  
GPIOD4  
GPIOD5  
VDDIO  
TDO  
TRST  
VDDIO  
PS  
VDDIO  
STFS  
6
7
VSSIO  
A15  
A14  
A13  
A12  
31  
32  
33  
34  
35  
VSSIO  
IRQA  
IRQB  
D0  
56  
57  
58  
59  
60  
STCK  
VDDIO  
VSSIO  
VDDA  
VSSA  
81  
82  
83  
84  
85  
VSSIO  
GPIOD6  
GPIOD7  
SCLK  
8
9
10  
D1  
MOSI  
11  
12  
13  
A11  
A10  
A9  
36  
37  
38  
D2  
D3  
D4  
61  
62  
63  
EXTAL  
XTAL  
VSS  
86  
87  
88  
MISO  
SS  
TA3  
14  
A8  
39  
D5  
64  
VDD  
89  
TA2  
15  
16  
17  
18  
19  
A7  
A6  
40  
41  
42  
43  
44  
D6  
D7  
65  
66  
67  
68  
69  
CLKO  
90  
91  
92  
93  
94  
TA1  
TA0  
GPIOB0  
GPIOB1  
GPIOB2  
GPIOB3  
A5  
D8  
RXD1  
TXD1  
VDD  
A4  
D9  
VSS  
D10  
20  
VDD  
45  
RESET  
70  
GPIOB4  
95  
VSS  
21  
22  
23  
24  
25  
A3  
A2  
46  
47  
48  
49  
50  
D11  
D12  
D13  
D14  
D15  
71  
72  
73  
74  
75  
GPIOB5  
GPIOB6  
GPIOB7  
GPIOD0  
GPIOD1  
96  
97  
RXD0  
TXD0  
DE  
A1  
98  
A0  
99  
TCS  
TCK  
EXTBOOT  
100  
56F826 Technical Data, Rev. 14  
Freescale Semiconductor  
49  
S
S
S
S
0.15(0.006)  
AC T-U  
Z
-T-  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE -AB- IS LOCATED AT BOTTOM  
OF LEAD AND IS COINCIDENT WITH THE  
LEAD WHERE THE LEAD EXITS THE PLASTIC  
BODY AT THE BOTTOM OF THE PARTING  
LINE.  
4. DATUMS-T-, -U-, AND-Z-TOBEDETERMINED  
AT DATUM PLANE -AB-.  
5. DIMENSIONS S AND V TO BE DETERMINED  
AT SEATING PLANE -AC-.  
-Z-  
6. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION. ALLOWABLE  
PROTRUSION IS 0.250 (0.010) PER SIDE.  
DIMENSIONS A AND B DO INCLUDE MOLD  
MISMATCH AND ARE DETERMINED AT  
DATUM PLANE -AB-.  
7. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION.DAMBARPROTRUSIONSHALL  
NOT CAUSE THE D DIMENSION TO EXCEED  
0.350 (0.014). DAMBAR CAN NOTBELOCATED  
ON THE LOWER RADIUS OR THE FOOT.  
MINIMUM SPACE BETWEEN PROTRUSION  
AND AN ADJACENT LEAD IS 0.070 (0.003).  
8. MINIMUM SOLDER PLATE THICKNESS  
SHALL BE 0.0076 (0.003).  
-U-  
9. EXACT SHAPE OF EACH CORNER MAY VARY  
FROM DEPICTION.  
A
9
MILLIMETERS  
DIM MIN MAX MIN MAX  
INCHES  
S
S
S
0.15(0.006)  
AB T-U  
Z
A
B
C
D
E
13.950 14.050 0.549 0.553  
13.950 14.050 0.549 0.553  
1.400 1.600 0.055 0.063  
0.170 0.270 0.007 0.011  
1.350 1.450 0.053 0.057  
0.170 0.230 0.007 0.009  
AE  
AE  
AD  
F
G
H
J
K
M
N
Q
R
S
0.500 BSC  
0.020 BSC  
-AB-  
0.050 0.150 0.002 0.006  
0.090 0.200 0.004 0.008  
0.500 0.700 0.020 0.028  
-AC-  
SEATING  
PLANE  
G
96X  
12 REF  
12 REF  
°
°
(24X PER SIDE)  
0.090 0.160 0.004 0.006  
1
5
1
°
5
°
°
°
0.150 0.250 0.006 0.010  
15.950 16.050 0.628 0.632  
15.950 16.050 0.628 0.632  
0.100(0.004) AC  
V
W
X
0.200 REF  
1.000 REF  
0.008 REF  
0.039 REF  
°
M
R
D
F
0.25 (0.010)  
E
C
GAUGE PLANE  
J
N
W
°
Q
H
K
M
S
S
0.20(0.008)  
AC T-U  
Z
X
SECTION AE-AE  
DETAIL AD  
CASE 842F-01  
Figure 4-2 100-pin LQPF Mechanical Information  
Please see www.freescale.com for the most current case outline.  
56F826 Technical Data, Rev. 14  
50  
Freescale Semiconductor  
Thermal Design Considerations  
Part 5 Design Considerations  
5.1 Thermal Design Considerations  
An estimation of the chip junction temperature, T , in °C can be obtained from the equation:  
J
Equation 1:TJ = TA + (PD × RθJA  
)
Where:  
TA = ambient temperature °C  
RθJA = package junction-to-ambient thermal resistance °C/W  
PD = power dissipation in package  
Historically, thermal resistance has been expressed as the sum of a junction-to-case thermal resistance and  
a case-to-ambient thermal resistance:  
Equation 2:RθJA = RθJC + RθCA  
Where:  
RθJA = package junction-to-ambient thermal resistance °C/W  
RθJC = package junction-to-case thermal resistance °C/W  
RθCA = package case-to-ambient thermal resistance °C/W  
R
is device-related and cannot be influenced by the user. The user controls the thermal environment to  
θJC  
change the case-to-ambient thermal resistance, R  
. For example, the user can change the air flow around  
θCA  
the device, add a heat sink, change the mounting arrangement on the Printed Circuit Board (PCB), or  
otherwise change the thermal dissipation capability of the area surrounding the device on the PCB. This  
model is most useful for ceramic packages with heat sinks; some 90% of the heat flow is dissipated through  
the case to the heat sink and out to the ambient environment. For ceramic packages, in situations where  
the heat flow is split between a path to the case and an alternate path through the PCB, analysis of the  
device thermal performance may need the additional modeling capability of a system-level thermal  
simulation tool.  
The thermal performance of plastic packages is more dependent on the temperature of the PCB to which  
the package is mounted. Again, if the estimations obtained from R  
the thermal performance is adequate, a system-level model may be appropriate.  
do not satisfactorily answer whether  
θJA  
Definitions:  
A complicating factor is the existence of three common definitions for determining the junction-to-case  
thermal resistance in plastic packages:  
Measure the thermal resistance from the junction to the outside surface of the package (case) closest to the  
chip mounting area when that surface has a proper heat sink. This is done to minimize temperature variation  
across the surface.  
Measure the thermal resistance from the junction to where the leads are attached to the case. This definition  
is approximately equal to a junction-to-board thermal resistance.  
56F826 Technical Data, Rev. 14  
Freescale Semiconductor  
51  
Use the value obtained by the equation (TJ – TT)/PD, where TT is the temperature of the package case  
determined by a thermocouple.  
The thermal characterization parameter is measured per JESD51-2 specification using a 40-gauge type T  
thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so  
that the thermocouple junction rests on the package. A small amount of epoxy is placed over the  
thermocouple junction and over about 1mm of wire extending from the junction. The thermocouple wire  
is placed flat against the package case to avoid measurement errors caused by cooling effects of the  
thermocouple wire.  
When heat sink is used, the junction temperature is determined from a thermocouple inserted at the  
interface between the case of the package and the interface material. A clearance slot or hole is normally  
required in the heat sink. Minimizing the size of the clearance is important to minimize the change in  
thermal performance caused by removing part of the thermal interface to the heat sink. Because of the  
experimental difficulties with this technique, many engineers measure the heat sink temperature and then  
back-calculate the case temperature using a separate measurement of the thermal resistance of the  
interface. From this case temperature, the junction temperature is determined from the junction-to-case  
thermal resistance.  
5.2 Electrical Design Considerations  
CAUTION  
This device contains protective circuitry to guard  
against damage due to high static voltage or  
electrical fields. However, normal precautions are  
advised to avoid application of any voltages higher  
than maximum-rated voltages to this high-impedance  
circuit. Reliability of operation is enhanced if unused  
inputs are tied to an appropriate voltage level.  
Use the following list of considerations to assure correct operation:  
Provide a low-impedance path from the board power supply to each VDD, VDDIO, and VDDA pin on the  
controller, and from the board ground to each VSS,VSSIO, and VSSA (GND) pin.  
The minimum bypass requirement is to place 0.1μF capacitors positioned as close as possible to the package  
supply pins. The recommended bypass configuration is to place one bypass capacitor on each of the  
VDD/VSS pairs, including VDDA/VSSA and VDDIO/VSSIO. Ceramic and tantalum capacitors tend to provide  
better performance tolerances.  
Ensure that capacitor leads and associated printed circuit traces that connect to the chip VDD, VDDIO, and  
VDDA and VSS, VSSIO, and VSSA (GND) pins are less than 0.5 inch per capacitor lead.  
Bypass the VDD and VSS layers of the PCB with approximately 100μF, preferably with a high-grade  
capacitor such as a tantalum capacitor.  
56F826 Technical Data, Rev. 14  
52  
Freescale Semiconductor  
Electrical Design Considerations  
Because the controller’s output signals have fast rise and fall times, PCB trace lengths should be minimal.  
Consider all device loads as well as parasitic capacitance due to PCB traces when calculating capacitance.  
This is especially critical in systems with higher capacitive loads that could create higher transient currents  
in the VDD and VSS circuits.  
Take special care to minimize noise levels on the VREF, VDDA and VSSA pins.  
When using Wired-OR mode on the SPI or the IRQx pins, the user must provide an external pull-up device.  
Designs that utilize the TRST pin for JTAG port or OnCE module functionality (such as development or  
debugging systems) should allow a means to assert TRST whenever RESET is asserted, as well as a means  
to assert TRST independently of RESET. TRST must be asserted at power up for proper operation. Designs  
that do not require debugging functionality, such as consumer products, TRST should be tied low.  
Because the Flash memory is programmed through the JTAG/OnCE port, designers should provide an  
interface to this port to allow in-circuit Flash programming.  
56F826 Technical Data, Rev. 14  
Freescale Semiconductor  
53  
Part 6 Ordering Information  
Table 6-1 lists the pertinent information needed to place an order. Consult a Freescale Semiconductor  
sales office or authorized distributor to determine availability and to order parts.  
Table 6-1 56F826 Ordering Information  
Ambient  
Frequency  
(MHz)  
Supply  
Voltage  
Pin  
Count  
Part  
Package Type  
Order Number  
56F826  
3.0–3.6 V  
2.25-2.75 V  
Plastic Quad Flat Pack (LQFP)  
100  
100  
80  
DSP56F826BU80  
56F826  
3.0–3.6 V  
Plastic Quad Flat Pack (LQFP)  
80  
DSP56F826BU80E *  
2.25-2.75 V  
*This package is RoHS compliant.  
56F826 Technical Data, Rev. 14  
54  
Freescale Semiconductor  
Electrical Design Considerations  
56F826 Technical Data, Rev. 14  
Freescale Semiconductor  
55  
How to Reach Us:  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
RoHS-compliant and/or Pb-free versions of Freescale products have the  
functionality and electrical characteristics of their non-RoHS-compliant  
and/or non-Pb-free counterparts. For further information, see  
http://www.freescale.com or contact your Freescale sales representative.  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
For information on Freescale’s Environmental Products program, go to  
http://www.freescale.com/epp.  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064, Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Information in this document is provided solely to enable system and  
software implementers to use Freescale Semiconductor products. There are  
no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits or integrated circuits based on the  
information in this document.  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
Freescale Semiconductor reserves the right to make changes without further  
notice to any products herein. Freescale Semiconductor makes no warranty,  
representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does Freescale Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or  
incidental damages. “Typical” parameters that may be provided in Freescale  
Semiconductor data sheets and/or specifications can and do vary in different  
applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer  
application by customer’s technical experts. Freescale Semiconductor does  
not convey any license under its patent rights nor the rights of others.  
Freescale Semiconductor products are not designed, intended, or authorized  
for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other  
application in which the failure of the Freescale Semiconductor product could  
create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended  
or unauthorized application, Buyer shall indemnify and hold Freescale  
Semiconductor and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized  
use, even if such claim alleges that Freescale Semiconductor was negligent  
regarding the design or manufacture of the part.  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor,  
Inc. All other product or service names are the property of their respective owners.  
This product incorporates SuperFlash® technology licensed from SST.  
© Freescale Semiconductor, Inc. 2005. All rights reserved.  
DSP56F826  
Rev. 14  
01/2007  
 复制成功!