欢迎访问ic37.com |
会员登录 免费注册
发布采购

56853 参数 Datasheet PDF下载

56853图片预览
型号: 56853
PDF下载: 下载PDF文件 查看货源
内容描述: 16位数字信号控制器 [16-bit Digital Signal Controllers]
分类和应用: 控制器
文件页数/大小: 60 页 / 1339 K
品牌: FREESCALE [ Freescale ]
 浏览型号56853的Datasheet PDF文件第1页浏览型号56853的Datasheet PDF文件第3页浏览型号56853的Datasheet PDF文件第4页浏览型号56853的Datasheet PDF文件第5页浏览型号56853的Datasheet PDF文件第6页浏览型号56853的Datasheet PDF文件第7页浏览型号56853的Datasheet PDF文件第8页浏览型号56853的Datasheet PDF文件第9页  
56853 General Description  
• 120 MIPS at 120MHz  
• Serial Port Interface (SPI)  
• 12K x 16-bit Program SRAM  
• 4K x 16-bit Data SRAM  
• 1K x 16-bit Boot ROM  
• 8-bit Parallel Host Interface  
• General Purpose 16-bit Quad Timer  
• JTAG/Enhanced On-Chip Emulation (OnCE™) for  
unobtrusive, real-time debugging  
• Access up to 2M words of program memory or 8M of  
data memory  
• Computer Operating Properly (COP)/Watchdog Timer  
• Time-of-Day (TOD)  
• Chip Select Logic for glue-less interface to ROM and  
SRAM  
• 128 LQFP package  
• Six (6) independent channels of DMA  
• Up to 41 GPIO  
• Enhanced Synchronous Serial Interfaces (ESSI)  
• Two (2) Serial Communication Interfaces (SCI)  
V
V
6
V
V
SSA  
V
V
SSIO  
SS  
DDA  
DDIO  
DD  
6
10  
11  
6
JTAG/  
Enhanced  
OnCE  
16-Bit  
56800E Core  
Program Controller  
and  
Hardware Looping Unit  
Address  
Generation Unit  
Data ALU  
Bit  
16 x 16 + 36 36-Bit MAC  
Three 16-bit Input Registers  
Four 36-bit Accumulators  
Manipulation  
Unit  
PAB  
PDB  
CDBR  
CDBW  
Memory  
XDB2  
Program Memory  
XAB1  
12,288 x 16 SRAM  
XAB2  
System Bus  
Control  
DMA  
6 channel  
Boot ROM  
PAB  
1024 x 16 ROM  
PDB  
Data Memory  
4,096 x 16 SRAM  
CDBR  
CDBW  
IPBus Bridge (IPBB)  
Decoding  
Peripherals  
POR  
CLKO  
IPBus CLK  
3
MODEA-C or  
(GPIOH0-H2)  
System  
Integration  
Module  
COP/TOD CLK  
RSTO  
External Address  
Bus Switch  
A0-20 [20:0]  
RESET  
External Data  
Bus Switch  
External Bus  
Interface Unit  
D0-D15 [15:0]  
EXTAL  
XTAL  
Clock  
Generator  
ESSI0  
or  
GPIOC  
2 SCI  
or  
GPIOE  
Quad  
Timer  
or  
SPI  
or  
GPIOF  
Host  
Interrupt  
COP/  
Watch-  
dog  
Time  
of  
Day  
RD Enable  
WR Enable  
Interface Controller  
or  
GPIOB  
Bus Control  
OSC PLL  
GPIOG  
CS0-CS3[3:0] or  
GPIOA0-A3[3:0]  
6
4
4
4
16  
IRQA  
IRQB  
56853 Block Diagram  
56853 Technical Data, Rev. 6  
Freescale Semiconductor  
3
Part 1 Overview  
1.1 56853 Features  
1.1.1  
Core  
Efficient 16-bit engine with dual Harvard architecture  
120 Million Instructions Per Second (MIPS) at 120MHz core frequency  
Single-cycle 16 × 16-bit parallel Multiplier-Accumulator (MAC)  
Four (4) 36-bit accumulators including extension bits  
16-bit bidirectional shifter  
Parallel instruction set with unique DSP addressing modes  
Hardware DO and REP loops  
Three (3) internal address buses and one (1) external address bus  
Four (4) internal data buses and one (1) external data bus  
Instruction set supports both DSP and controller functions  
Four (4) hardware interrupt levels  
Five (5) software interrupt levels  
Controller-style addressing modes and instructions for compact code  
Efficient C Compiler and local variable support  
Software subroutine and interrupt stack with depth limited only by memory  
JTAG/Enhanced OnCE debug programming interface  
1.1.2  
Memory  
Harvard architecture permits up to three (3) simultaneous accesses to program and data memory  
On-Chip Memory  
— 12K × 16-bit Program SRAM  
— 4K × 16-bit Data SRAM  
— 1K × 16-bit Boot ROM  
Off-Chip Memory Expansion (EMI)  
— Access up to 2M words of program memory or 8M data memory  
— Chip Select Logic for glue-less interface to ROM and SRAM  
1.1.3  
Peripheral Circuits for 56853  
General Purpose 16-bit Quad Timer*  
Two (2) Serial Communication Interfaces (SCI)*  
Serial Peripheral Interface (SPI) Port*  
Enhanced Synchronous Serial Interface (ESSI) modules*  
Computer Operating Properly (COP)  
56853 Technical Data, Rev. 6  
4
Freescale Semiconductor  
56853 Description  
Watchdog Timer  
JTAG/Enhanced On-Chip Emulation (OnCE) for unobtrusive, real-time debugging  
Six (6) independent channels of DMA  
8-bit Parallel Host Interface*  
Time-of-Day (TOD)  
128 LQFP package  
Up to 41 GPIO  
* Each peripheral I/O can be used alternately as a General Purpose I/O if not needed  
1.1.4  
Energy Information  
Fabricated in high-density CMOS with 3.3V, TTL-compatible digital inputs  
Wait and Stop modes available  
1.2 56853 Description  
The 56853 is a member of the 56800E core-based family of controllers. It combines, on a single chip, the  
processing power of a Digital Signal Processor (DSP) and the functionality of a microcontroller with a  
flexible set of peripherals to create an extremely cost-effective solution. Because of its low cost,  
configuration flexibility, and compact program code, the 56853 is well-suited for many applications. The  
56853 includes many peripherals that are especially useful for low-end Internet appliance applications  
and low-end client applications such as telephony; portable devices; Internet audio and point-of-sale  
systems, such as noise suppression; ID tag readers; sonic/subsonic detectors; security access devices;  
remote metering; sonic alarms.  
The 56800E core is based on a Harvard-style architecture consisting of three execution units operating in  
parallel, allowing as many as six operations per instruction cycle. The microprocessor-style programming  
model and optimized instruction set allow straightforward generation of efficient, compact DSP and  
control code. The instruction set is also highly efficient for C Compilers, enabling rapid development of  
optimized control applications.  
The 56853 supports program execution from either internal or external memories. Two data operands can  
be accessed from the on-chip Data RAM per instruction cycle. The 56853 also provides two external  
dedicated interrupt lines, and up to 41 General Purpose Input/Output (GPIO) lines, depending on  
peripheral configuration.  
The 56853 controller includes 12K words of Program RAM, 4K words of Data RAM, and 1K words of  
Boot ROM. It also supports program execution from external memory. The 56800 core can access two data  
operands from the on-chip Data RAM per instruction cycle.  
This controller also provides a full set of standard programmable peripherals that include an 8-bit parallel  
Host Interface, Enhanced Synchronous Serial Interface (ESSI), one Serial Peripheral Interface (SPI), the  
option to select a second SPI or two Serial Communications Interfaces (SCIs), and Quad Timer. The Host  
Interface, ESSI, SPI, SCI, four chip selects and quad timer can be used as General Purpose Input/Outputs  
(GPIOs) if its primary function is not required.  
56853 Technical Data, Rev. 6  
Freescale Semiconductor  
5
1.3 State of the Art Development Environment  
Processor ExpertTM (PE) provides a Rapid Application Design (RAD) tool that combines easy-to-use  
component-based software application creation with an expert knowledge system.  
The Code Warrior Integrated Development Environment is a sophisticated tool for code navigation,  
compiling, and debugging. A complete set of evaluation modules (EVMs) and development system cards  
will support concurrent engineering. Together, PE, Code Warrior and EVMs create a complete, scalable  
tools solution for easy, fast, and efficient development.  
1.4 Product Documentation  
The four documents listed in Table 1-1 are required for a complete description of and proper design with  
the 56853. Documentation is available from local Freescale distributors, Freescale Semiconductor sales  
offices, Freescale Literature Distribution Centers, or online at www.freescale.com.  
Table 1-1 56853 Chip Documentation  
Topic  
DSP56800E  
Description  
Order Number  
DSP56800ERM  
Detailed description of the 56800E architecture, 16-bit  
controller core processor and the instruction set  
Reference Manual  
DSP56853  
User’s Manual  
Detailed description of memory, peripherals, and  
interfaces of the 56853  
DSP5685xUM  
DSP56853  
DSP56853  
Technical Data Sheet  
Electrical and timing specifications, pin descriptions,  
and package descriptions  
DSP56853  
Errata  
Details any chip issues that might be present  
DSP56853E  
56853 Technical Data, Rev. 6  
6
Freescale Semiconductor  
Data Sheet Conventions  
1.5 Data Sheet Conventions  
This data sheet uses the following conventions:  
OVERBAR  
This is used to indicate a signal that is active when pulled low. For example, the RESET pin is  
active when low.  
“asserted”  
“deasserted”  
Examples:  
A high true (active high) signal is high or a low true (active low) signal is low.  
A high true (active high) signal is low or a low true (active low) signal is high.  
Voltage1  
Signal/Symbol  
Logic State  
True  
Signal State  
Asserted  
PIN  
PIN  
PIN  
PIN  
VIL/VOL  
False  
Deasserted  
Asserted  
VIH/VOH  
VIH/VOH  
VIL/VOL  
True  
False  
Deasserted  
1. Values for VIL, VOL, VIH, and VOH are defined by individual product specifications.  
56853 Technical Data, Rev. 6  
Freescale Semiconductor  
7
Part 2 Signal/Connection Descriptions  
2.1 Introduction  
The input and output signals of the 56853 are organized into functional groups, as shown in Table 2-1 and  
as illustrated in Figure 2-1. In Table 3-1 each table row describes the package pin and the signal or signals  
present.  
Table 2-1 56853 Functional Group Pin Allocations  
Functional Group  
Number of Pins  
(6, 11, 1)1  
Power (VDD, VDDIO, or VDDA  
)
(6, 10, 1)1  
Ground (VSS, VSSIO,or VSSA  
)
PLL and Clock  
3
39  
4
External Bus Signals  
External Chip Select*  
72  
Interrupt and Program Control  
Host Interface (HI)*  
163  
6
Enhanced Synchronous Serial Interface (ESSI0) Port*  
Serial Communications Interface (SCI0) Ports*  
Serial Communications Interface (SCI1) Ports*  
Serial Peripheral Interface (SPI) Port*  
Quad Timer Module Port*  
2
2
4
4
JTAG/Enhanced On-Chip Emulation (EOnCE)  
*Alternately, GPIO pins  
6
1. VDD = VDD CORE, VSS = VSS CORE, VDDIO= VDD IO, VSSIO = VSS IO, VDDA = VDD ANA, VSSA = VSS ANA  
2. MODA, MODB and MODC can be used as GPIO after the bootstrap process has completed.  
3. The following Host Interface signals are multiplexed: HRWB to HRD, HDS to HWR, HREQ to HTRQ and HACK to HRRQ.  
56853 Technical Data, Rev. 6  
8
Freescale Semiconductor  
Introduction  
RXDO (GPIOE0)  
TXDO (GPIOE1)  
VDD  
VSS  
1
1
SCI 0  
SCI 2  
Logic  
Power  
6
6
RXD1 (GPIOE2)  
TXD1 (GPIOE3)  
1
1
VDDIO  
VSSIO  
I/O  
Power  
11  
10  
STD0 (GPIOC0)  
1
SRD0 (GPIOC1)  
SCK0 (GPIOC2)  
Analog  
Power1  
VDDA  
VSSA  
1
1
1
ESSI 0  
1
SC00 (GPIOC3)  
SC01 (GPIOC4)  
SC02 (GPIOC5)  
1
1
56853  
A0 - A20  
D0 - D15  
RD  
1
21  
16  
1
External  
Bus  
WR  
1
Chip  
Select  
CS0 - CS3 (GPIOA0 - A3)  
4
HD0 - HD7 (GPIOB0 - B7)  
HA0 - HA2 (GPIOB8 - B10)  
HRWB (HRD) (GPIOB11)  
HDS (HWR) (GPIOB12)  
HCS (GPIOB13)  
8
3
MISO (GPIOF0)  
1
1
1
MOSI (GPIOF1)  
SCK (GPIOF2)  
1
1
SPI  
Host  
Interface  
SS (GPIOF3)  
1
1
1
HREQ (HTRQ) (GPIOB14)  
HACK (HRRQ) (GPIOB15)  
XTAL  
1
1
1
1
EXTAL  
CLKO  
PLL /  
Timer  
TIO0 - TIO3 (GPIOG0 - G3)  
4
Clock  
Module  
TCK  
IRQA  
IRQB  
1
1
1
TDI  
1
1
1
1
JTAG /  
TDO  
TMS  
MODA, MODB, MODC  
(GPIOH0 - H2)  
Enhanced  
OnCE  
Interrupt /  
Program  
Control  
3
RESET  
RSTO  
TRST  
DE  
1
1
1
2
Figure 2-1 56853 Signals Identified by Functional Group  
1. Specifically for PLL, OSC, and POR.  
2. Alternate pin functions are shown in parentheses.  
56853 Technical Data, Rev. 6  
Freescale Semiconductor  
9
Part 3 Signals and Package Information  
All digital inputs have a weak internal pull-up circuit associated with them. These pull-up circuits are  
enabled by default. Exceptions:  
1. When a pin has GPIO functionality, the pull-up may be disabled under software control.  
2. MODE A, MODE B and MODE C pins have no pull-up.  
3. TCK has a weak pull-down circuit always active.  
4. Bidirectional I/O pullups automatically disable when the output is enabled.  
This table is presented consistently with the Signals Identified by Functional Group figure.  
1. BOLD entries in the Type column represents the state of the pin just out of reset.  
2. Output(Z) means an output in a High-Z condition  
Table 3-1. 56853 Signal and Package Information for the 128-pin LQFP  
Pin No.  
13  
Signal Name  
VDD  
Type  
Description  
VDD  
Power (VDD)—These pins provide power to the internal structures of  
the chip, and should all be attached to VDD.  
47  
VDD  
64  
VDD  
79  
VDD  
80  
VDD  
112  
14  
VDD  
VSS  
VSS  
Ground (VSS)—These pins provide grounding for the internal  
structures of the chip and should all be attached to VSS.  
48  
VSS  
63  
VSS  
81  
VSS  
96  
VSS  
113  
VSS  
56853 Technical Data, Rev. 6  
10  
Freescale Semiconductor  
Introduction  
Table 3-1. 56853 Signal and Package Information for the 128-pin LQFP (Continued)  
Pin No.  
5
Signal Name  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VDDIO  
VSSIO  
VSSIO  
VSSIO  
VSSIO  
VSSIO  
VSSIO  
VSSIO  
VSSIO  
VSSIO  
VSSIO  
VDDA  
Type  
Description  
VDDIO  
Power (VDDIO)—These pins provide power for all I/O and ESD  
structures of the chip, and should all be attached to VDDIO (3.3V).  
18  
41  
55  
61  
72  
91  
92  
100  
114  
124  
6
VSSIO  
Ground (VSSIO)—These pins provide grounding for all I/O and ESD  
structures of the chip and should all be attached to VSS.  
19  
42  
56  
62  
74  
93  
102  
115  
125  
22  
VDDA  
VSSA  
Analog Power (VDDA)—These pins supply an analog power source.  
Analog Ground (VSSA)—This pin supplies an analog ground.  
23  
VSSA  
56853 Technical Data, Rev. 6  
Freescale Semiconductor  
11  
Table 3-1. 56853 Signal and Package Information for the 128-pin LQFP (Continued)  
Pin No.  
Signal Name  
Type  
Description  
9
A0  
A1  
Output(Z)  
Address Bus (A0-A20)—These signals specify a word address for  
external program or data memory access.  
10  
11  
12  
26  
27  
28  
29  
43  
44  
45  
46  
57  
58  
59  
60  
67  
68  
69  
70  
71  
A2  
A3  
A4  
A5  
A6  
A7  
A8  
A9  
A10  
A11  
A12  
A13  
A14  
A15  
A16  
A17  
A18  
A19  
A20  
56853 Technical Data, Rev. 6  
12  
Freescale Semiconductor  
Introduction  
Table 3-1. 56853 Signal and Package Information for the 128-pin LQFP (Continued)  
Pin No.  
Signal Name  
Type  
Description  
73  
86  
D0  
D1  
Input/Output(Z) Data Bus (D0-D15)—These pins provide the bidirectional data for  
external program or data memory accesses.  
87  
D2  
88  
D3  
89  
D4  
90  
D5  
107  
108  
109  
110  
111  
122  
123  
126  
127  
128  
7
D6  
D7  
D8  
D9  
D10  
D11  
D12  
D13  
D14  
D15  
RD  
Output  
Output  
Read Enable (RD) —is asserted during external memory read cycles.  
This signal is pulled high during reset.  
8
WR  
Write Enable (WR)— is asserted during external memory write  
cycles.  
This signal is pulled high during reset.  
75  
76  
77  
78  
Output  
CS0  
External Chip Select (CS0)—This pin is used as a dedicated GPIO.  
Input/Output  
GPIOA0  
Port A GPIO (0) —This pin is a General Purpose I/O (GPIO) pin when  
not configured for host port usage.  
Output  
CS1  
External Chip Select (CS1)—This pin is used as a dedicated GPIO.  
Input/Output  
GPIOA1  
Port A GPIO (1) —This pin is a General Purpose I/O (GPIO) pin when  
not configured for host port usage.  
Output  
CS2  
External Chip Select (CS2)—This pin is used as a dedicated GPIO.  
Input/Output  
GPIOA2  
Port A GPIO (2) —This pin is a General Purpose I/O (GPIO) pin when  
not configured for host port usage.  
Output  
CS3  
External Chip Select (CS3)—This pin is used as a dedicated GPIO.  
Input/Output  
GPIOA3  
Port A GPIO (3)—This pin is a General Purpose I/O (GPIO) pin when  
not configured for host port usage.  
56853 Technical Data, Rev. 6  
Freescale Semiconductor  
13  
Table 3-1. 56853 Signal and Package Information for the 128-pin LQFP (Continued)  
Pin No.  
Signal Name  
Type  
Input  
Description  
30  
HD0  
Host Address (HD0)—This input provides data selection for HI  
registers.  
This pin is disconnected internally during reset.  
GPIOB0  
HD1  
Input/Output  
Port B GPIO (0)—This pin is a General Purpose I/O (GPIO) pin when  
not configured for host port usage.  
31  
32  
36  
37  
38  
Input  
Host Address (HD1)—This input provides data selection for HI  
registers.  
This pin is disconnected internally during reset.  
GPIOB1  
HD2  
Input/Output  
Port B GPIO (1)—This pin is a General Purpose I/O (GPIO) pin when  
not configured for host port usage.  
Input  
Host Address (HD2)—This input provides data selection for HI  
registers.  
This pin is disconnected internally during reset.  
GPIOB2  
HD3  
Input/Output  
Port B GPIO (2)—This pin is a General Purpose I/O (GPIO) pin when  
not configured for host port usage.  
Input  
Host Address (HD3)—This input provides data selection for HI  
registers.  
This pin is disconnected internally during reset.  
GPIOB3  
HD4  
Input/Output  
Port B GPIO (3)—This pin is a General Purpose I/O (GPIO) pin when  
not configured for host port usage.  
Input  
Host Address (HD4)—This input provides data selection for HI  
registers.  
This pin is disconnected internally during reset.  
GPIOB4  
HD5  
Input/Output  
Port B GPIO (4)—This pin is a General Purpose I/O (GPIO) pin when  
not configured for host port usage.  
Input  
Host Address (HD5)—This input provides data selection for HI  
registers.  
This pin is disconnected internally during reset.  
GPIOB5  
Input/Output  
Port B GPIO (5)—This pin is a General Purpose I/O (GPIO) pin when  
not configured for host port usage.  
56853 Technical Data, Rev. 6  
14  
Freescale Semiconductor  
Introduction  
Table 3-1. 56853 Signal and Package Information for the 128-pin LQFP (Continued)  
Pin No.  
Signal Name  
Type  
Input  
Description  
39  
HD6  
Host Address (HD6)—This input provides data selection for HI  
registers.  
This pin is disconnected internally during reset.  
GPIOB6  
HD7  
Input/Output  
Port B GPIO (6)—This pin is a General Purpose I/O (GPIO) pin when  
not configured for host port usage.  
40  
82  
83  
84  
85  
Input  
Host Address (HD7)—This input provides data selection for HI  
registers.  
This pin is disconnected internally during reset.  
GPIOB7  
HA0  
Input/Output  
Port B GPIO (7)—This pin is a General Purpose I/O (GPIO) pin when  
not configured for host port usage.  
Input  
Host Address (HA0)—These inputs provide the address selection for  
HI registers.  
These pins are disconnected internally during reset.  
GPIOB8  
HA1  
Input/Output  
Port B GPIO (8)—These pins are General Purpose I/O (GPIO) pins  
when not configured for host port usage.  
Input  
Host Address (HA0)—These inputs provide the address selection for  
HI registers.  
These pins are disconnected internally during reset.  
GPIOB9  
HA2  
Input/Output  
Port B GPIO (9)—These pins are General Purpose I/O (GPIO) pins  
when not configured for host port usage.  
Input  
Host Address (HA0)—These inputs provide the address selection for  
HI registers.  
These pins are disconnected internally during reset.  
GPIOB10  
HRWB  
Input/Output  
Port B GPIO (10)—These pins are General Purpose I/O (GPIO) pins  
when not configured for host port usage.  
Input  
Host Read/Write (HRWB)—When the HI08 is programmed to  
interface to a single-data-strobe host bus and the HI function is  
selected, this signal is the Read/Write input.  
These pins are disconnected internally.  
HRD  
Input  
Host Read Data (HRD)—This signal is the Read Data input when the  
HI08 is programmed to interface to a double-data-strobe host bus and  
the HI function is selected.  
GPIOB11  
Input/Output  
Port B GPIO (11)—This pin is a General Purpose I/O (GPIO) pin  
when not configured for host port usage.  
56853 Technical Data, Rev. 6  
Freescale Semiconductor  
15  
Table 3-1. 56853 Signal and Package Information for the 128-pin LQFP (Continued)  
Pin No.  
Signal Name  
Type  
Input  
Description  
103  
HDS  
Host Data Strobe (HDS)—When the HI08 is programmed to  
interface to a single-data-strobe host bus and the HI function is  
selected, this input enables a data transfer on the HI when HCS is  
asserted.  
These pins are disconnected internally.  
HWR  
Input  
Host Write Enable (HWR)—This signal is the Write Data input when  
the HI08 is programmed to interface to a double-data-strobe host bus  
and the HI function is selected.  
GPIOB12  
HCS  
Input/Output  
Port B GPIO (12)—This pin is a General Purpose I/O (GPIO) pin  
when not configured for host port usage.  
104  
105  
Input  
Host Chip Select (HCS)—This input is the chip select input for the  
Host Interface.  
These pins are disconnected internally.  
GPIOB13  
HREQ  
Input/Output  
Port B GPIO (13)—This pin is a General Purpose I/O (GPIO) pin  
when not configured for host port usage.  
Open Drain  
Output  
Host Request (HREQ)—When the HI08 is programmed for HRMS=0  
functionality (typically used on a single-data-strobe bus), this open  
drain output is used by the HI to request service from the host  
processor. The HREQ may be connected to an interrupt request pin  
of a host processor, a transfer request of a DMA controller, or a  
control input of external circuitry.  
These pins are disconnected internally.  
HTRQ  
Open Drain  
Output  
Transmit Host Request (HTRQ)—This signal is the Transmit Host  
Request output when the HI08 is programmed for HRMS=1  
functionality and is typically used on a double-data-strobe bus.  
GPIOB14  
Input/Output  
Port B GPIO (14)—This pin is a General Purpose I/O (GPIO) pin  
when not configured for host port usage.  
56853 Technical Data, Rev. 6  
16  
Freescale Semiconductor  
Introduction  
Table 3-1. 56853 Signal and Package Information for the 128-pin LQFP (Continued)  
Pin No.  
Signal Name  
Type  
Input  
Description  
106  
HACK  
Host Acknowledge (HACK)—When the HI08 is programmed for  
HRMS=0 functionality (typically used on a single-data-strobe bus),  
this input has two functions: (1) provide a Host Acknowledge signal  
for DMA transfers or (2) to control handshaking and provide a Host  
Interrupt Acknowledge compatible with the MC68000 family  
processors.  
These pins are disconnected internally.  
HRRQ  
Open Drain  
Output  
Receive Host Request (HRRQ)—This signal is the Receive Host  
Request output when the HI08 is programmed for HRMS=1  
functionality and is typically used on a double-data-strobe bus.  
GPIOB15  
TIO0  
Input/Output  
Port B GPIO(15)—This pin is a General Purpose I/O (GPIO) pin  
when not configured for host port usage.  
101  
99  
Input/Output  
Timer Input/Outputs (TIO0)—This pin can be independently  
configured to be either a timer input source or an output flag.  
GPIOG0  
TIO1  
Input/Output  
Port G GPIOG0—This pin is a General Purpose I/O (GPIO) pin that  
can individually be programmed as an input or output pin.  
Input/Output  
Timer Input/Outputs (TIO1)—This pin can be independently  
configured to be either a timer input source or an output flag.  
GPIOG1  
TIO2  
Input/Output  
Port G GPIO (1)—This pin is a General Purpose I/O (GPIO) pin that  
can individually be programmed as an input or output pin.  
98  
Input/Output  
Timer Input/Outputs (TIO2)—This pin can be independently  
configured to be either a timer input source or an output flag.  
GPIOG2  
TIO3  
Input/Output  
Port G GPIO (2)—This pin is a General Purpose I/O (GPIO) pin that  
can individually be programmed as an input or output pin.  
97  
Input/Output  
Timer Input/Outputs (TIO3)—This pin can be independently  
configured to be either a timer input source or an output flag.  
GPIOG3  
Input/Output  
Input  
Port G GPIO (3)—This pin is a General Purpose I/O (GPIO) pin that  
can individually be programmed as an input or output pin.  
20  
21  
IRQA  
IRQB  
External Interrupt Request A and B—The IRQA and IRQB inputs  
are asynchronous external interrupt requests that indicate that an  
external device is requesting service. A Schmitt trigger input is used  
for noise immunity. They can be programmed to be level-sensitive or  
negative-edge- triggered. If level-sensitive triggering is selected, an  
external pull-up resistor is required for Wired-OR operation.  
15  
MODA  
Input  
Mode Select (MODA)—During the bootstrap process MODA selects  
one of the eight bootstrap modes.  
GPIOH0  
Input/Output  
Port H GPIO (0)—This pin is a General Purpose I/O (GPIO) pin after  
the bootstrap process has completed.  
56853 Technical Data, Rev. 6  
Freescale Semiconductor  
17  
Table 3-1. 56853 Signal and Package Information for the 128-pin LQFP (Continued)  
Pin No.  
Signal Name  
Type  
Input  
Description  
16  
MODB  
Mode Select (MODB)—During the bootstrap process MODB selects  
one of the eight bootstrap modes.  
GPIOH1  
MODC  
Input/Output  
Port H GPIO (1)—This pin is a General Purpose I/O (GPIO) pin after  
the bootstrap process has completed.  
17  
35  
Input  
Mode Select (MODC)—During the bootstrap process MODC selects  
one of the eight bootstrap modes.  
GPIOH2  
RESET  
Input/Output  
Input  
Port H GPIO (2)—This pin is a General Purpose I/O (GPIO) pin after  
the bootstrap process has completed.  
Reset (RESET)—This input is a direct hardware reset on the  
processor. When RESET is asserted low, the device is initialized and  
placed in the Reset state. A Schmitt trigger input is used for noise  
immunity. When the RESET pin is deasserted, the initial chip  
operating mode is latched from the MODA, MODB, and MODC pins.  
To ensure complete hardware reset, RESET and TRST should be  
asserted together. The only exception occurs in a debugging  
environment when a hardware reset is required and it is necessary  
not to reset the JTAG/Enhanced OnCE module. In this case, assert  
RESET, but do not assert TRST.  
34  
65  
RSTO  
RXD0  
Output  
Reset Output (RSTO)—This output is asserted on any reset  
condition (external reset, low voltage, software or COP).  
Input  
Serial Receive Data 0 (RXD0)—This input receives byte-oriented  
serial data and transfers it to the SCI 0 receive shift register.  
GPIOE0  
TXD0  
Input/Output  
Port E GPIO (0)—This pin is a General Purpose I/O (GPIO) pin that  
can individually be programmed as input or output pin.  
66  
94  
95  
Output(Z)  
Serial Transmit Data 0 (TXD0)—This signal transmits data from the  
SCI 0 transmit data register.  
GPIOE1  
RXD1  
Input/Output  
Port E GPIO (1)—This pin is a General Purpose I/O (GPIO) pin that  
can individually be programmed as input or output pin.  
Input  
Serial Receive Data 1 (RXD1)—This input receives byte-oriented  
serial data and transfers it to the SCI 1 receive shift register.  
GPIOE2  
TXD1  
Input/Output  
Port E GPIO (2)—This pin is a General Purpose I/O (GPIO) pin that  
can individually be programmed as input or output pin.  
Output(Z)  
Serial Transmit Data 1 (TXD1)—This signal transmits data from the  
SCI 1 transmit data register.  
GPIOE3  
Input/Output  
Port E GPIO (3)—This pin is a General Purpose I/O (GPIO) pin that  
can individually be programmed as input or output pin.  
56853 Technical Data, Rev. 6  
18  
Freescale Semiconductor  
Introduction  
Table 3-1. 56853 Signal and Package Information for the 128-pin LQFP (Continued)  
Pin No.  
Signal Name  
Type  
Description  
116  
STD0  
Output  
ESSI Transmit Data (STD0)—This output pin transmits serial data  
from the ESSI Transmitter Shift Register.  
GPIOC0  
SRD0  
Input/Output  
Port C GPIO (0)—This pin is a General Purpose I/O (GPIO) pin when  
the ESSI is not in use.  
117  
118  
Input  
ESSI Receive Data (SRD0)—This input pin receives serial data and  
transfers the data to the ESSI Receive Shift Register.  
GPIOC1  
SCK0  
Input/Output  
Input/Output  
Port C GPIO (1)—This pin is a General Purpose I/O (GPIO) pin when  
the ESSI is not in use.  
ESSI Serial Clock (SCK0)—This bidirectional pin provides the serial  
bit rate clock for the transmit section of the ESSI. The clock signal can  
be continuous or gated and can be used by both the transmitter and  
receiver in synchronous mode.  
GPIOC2  
SC00  
Input/Output  
Port C GPIO (2)—This pin is a General Purpose I/O (GPIO) pin when  
the ESSI is not in use.  
119  
120  
121  
Input/Output  
ESSI Serial Control Pin 0 (SC00)—The function of this pin is  
determined by the selection of either synchronous or asynchronous  
mode. For asynchronous mode, this pin will be used for the receive  
clock I/O. For synchronous mode, this pin is used either for  
transmitter1 output or for serial I/O flag 0.  
GPIOC3  
SC01  
Input/Output  
Port C GPIO (3)—This pin is a General Purpose I/O (GPIO) pin when  
the ESSI is not in use.  
Input/Output  
ESSI Serial Control Pin 1 (SC01)—The function of this pin is  
determined by the selection of either synchronous or asynchronous  
mode. For asynchronous mode, this pin is the receiver frame sync  
I/O. For synchronous mode, this pin is used either for transmitter2  
output or for serial I/O flag 1.  
GPIOC4  
SC02  
Input/Output  
Port C GPIO (4)—This pin is a General Purpose I/O (GPIO) pin when  
the ESSI is not in use.  
Input/Output  
ESSI Serial Control Pin 2 (SC02)—This pin is used for frame sync  
I/O. SC02 is the frame sync for both the transmitter and receiver in  
synchronous mode and for the transmitter only in asynchronous  
mode. When configured as an output, this pin is the internally  
generated frame sync signal. When configured as an input, this pin  
receives an external frame sync signal for the transmitter (and the  
receiver in synchronous operation).  
GPIOC5  
Input /Output  
Port C GPIO (5)—This pin is a General Purpose I/O (GPIO) pin when  
the ESSI is not in use.  
56853 Technical Data, Rev. 6  
Freescale Semiconductor  
19  
Table 3-1. 56853 Signal and Package Information for the 128-pin LQFP (Continued)  
Pin No.  
Signal Name  
Type  
Description  
1
MISO  
Input/Output  
SPI Master In/Slave Out (MISO)—This serial data pin is an input to a  
master device and an output from a slave device. The MISO line of a  
slave device is placed in the high-impedance state if the slave device  
is not selected. The driver on this pin can be configured as an  
open-drain driver by the SPI’s Wired-OR mode (WOM) bit when this  
pin is configured for SPI operation.  
GPIOF0  
MOSI  
Input/Output  
Port F GPIO (0)—This pin is a General Purpose I/O (GPIO) pin that  
can be individually programmed as input or output pin.  
2
Input/Output (Z) SPI Master Out/Slave In (MOSI)—This serial data pin is an output  
from a master device and an input to a slave device. The master  
device places data on the MOSI line a half-cycle before the clock  
edge that the slave device uses to latch the data. The driver on this  
pin can be configured as an open-drain driver by the SPI’s WOM bit  
when this pin is configured for SPI operation.  
GPIOF1  
SCK  
Input/Output  
Port F GPIO (1)—This pin is a General Purpose I/O (GPIO) pin that  
can individually be programmed as input or output pin.  
3
Input/Output  
SPI Serial Clock (SCK)—This bidirectional pin provides a serial bit  
rate clock for the SPI. This gated clock signal is an input to a slave  
device and is generated as an output by a master device. Slave  
devices ignore the SCK signal unless the SS pin is active low. In both  
master and slave SPI devices, data is shifted on one edge of the SCK  
signal and is sampled on the opposite edge, where data is stable. The  
driver on this pin can be configured as an open-drain driver by the  
SPI’s WOM bit when this pin is configured for SPI operation. When  
using Wired-OR mode, the user must provide an external pull-up  
device.  
GPIOF2  
SS  
Input/Output  
Port F GPIO (2)—This pin is a General Purpose I/O (GPIO) pin that  
can be individually programmed as input or output pin.  
4
Input  
SPI Slave Select (SS)—This input pin selects a slave device before a  
master device can exchange data with the slave device. SS must be  
low before data transactions and must stay low for the duration of the  
transaction. The SS line of the master must be held high.  
GPIOF3  
XTAL  
Input/Output  
Port F GPIO (3)—This pin is a General Purpose I/O (GPIO) pin that  
can individually be programmed as input or output pin.  
24  
25  
33  
Input/Output  
Crystal Oscillator Output (XTAL)—This output connects the internal  
crystal oscillator output to an external crystal. If an external clock  
source other than a crystal oscillator is used, XTAL must be used as  
the input.  
EXTAL  
CLKO  
Input  
External Crystal Oscillator Input (EXTAL)—This input should be  
connected to an external crystal. If an external clock source other  
than a crystal oscillator is used, EXTAL must be tied off. See Section  
4.5.2  
Output  
Clock Output (CLKO)—This pin outputs a buffered clock signal.  
When enabled, this signal is the system clock divided by four.  
56853 Technical Data, Rev. 6  
20  
Freescale Semiconductor  
Introduction  
Table 3-1. 56853 Signal and Package Information for the 128-pin LQFP (Continued)  
Pin No.  
Signal Name  
Type  
Description  
54  
TCK  
Input  
Test Clock Input (TCK)—This input pin provides a gated clock to  
synchronize the test logic and to shift serial data to the  
JTAG/Enhanced OnCE port. The pin is connected internally to a  
pull-down resistor.  
52  
51  
TDI  
Input  
Test Data Input (TDI)—This input pin provides a serial input data  
stream to the JTAG/Enhanced OnCE port. It is sampled on the rising  
edge of TCK and has an on-chip pull-up resistor.  
TDO  
Output (Z)  
Test Data Output (TDO)—This tri-statable output pin provides a  
serial output data stream from the JTAG/Enhanced OnCE port. It is  
driven in the Shift-IR and Shift-DR controller states, and changes on  
the falling edge of TCK.  
53  
50  
TMS  
Input  
Input  
Test Mode Select Input (TMS)—This input pin is used to sequence  
the JTAG TAP controller’s state machine. It is sampled on the rising  
edge of TCK and has an on-chip pull-up resistor.  
Note: Always tie the TMS pin to VDD through a 2.2K resistor.  
TRST  
Test Reset (TRST)—As an input, a low signal on this pin provides a  
reset signal to the JTAG TAP controller. To ensure complete  
hardware reset, TRST should be asserted whenever RESET is  
asserted. The only exception occurs in a debugging environment,  
since the Enhanced OnCE/JTAG module is under the control of the  
debugger. In this case it is not necessary to assert TRST when  
asserting RESET. Outside of a debugging environment RESET  
should be permanently asserted by grounding the signal, thus  
disabling the Enhanced OnCE/JTAG module on the controller.  
Note: For normal operation, connect TRST directly to VSS. If the design  
is to be used in a debugging environment, TRST may be tied to VSS through  
a 1K resistor.  
49  
DE  
Input/Output  
Debug Event (DE)—This is an open-drain, bidirectional, active low  
signal. As an input, it is a means of entering debug mode of operation  
from an external command controller. As an output, it is a means of  
acknowledging that the chip has entered debug mode.  
This pin is connected internally to a weak pull-up resistor.  
56853 Technical Data, Rev. 6  
Freescale Semiconductor  
21  
Part 4 Specifications  
4.1 General Characteristics  
The 56853 is fabricated in high-density CMOS with 5-volt tolerant TTL-compatible digital inputs. The  
term “5-volt tolerant” refers to the capability of an I/O pin, built on a 3.3V compatible process  
technology, to withstand a voltage up to 5.5V without damaging the device. Many systems have a  
mixture of devices designed for 3.3V and 5V power supplies. In such systems, a bus may carry both 3.3V  
and 5V- compatible I/O voltage levels (a standard 3.3V I/O is designed to receive a maximum voltage of  
3.3V ± 10% during normal operation without causing damage). This 5V tolerant capability therefore  
offers the power savings of 3.3V I/O levels while being able to receive 5V levels without being damaged.  
Absolute maximum ratings given in Table 4-1 are stress ratings only, and functional operation at the  
maximum is not guaranteed. Stress beyond these ratings may affect device reliability or cause permanent  
damage to the device.  
The 56853 DC/AC electrical specifications are preliminary and are from design simulations. These  
specifications may not be fully tested or guaranteed at this early stage of the product life cycle. Finalized  
specifications will be published after complete characterization and device qualifications have been  
completed.  
CAUTION  
This device contains protective circuitry to guard  
against damage due to high static voltage or  
electrical fields. However, normal precautions are  
advised to avoid application of any voltages higher  
than maximum rated voltages to this high-impedance  
circuit. Reliability of operation is enhanced if unused  
inputs are tied to an appropriate voltage level.  
56853 Technical Data, Rev. 6  
22  
Freescale Semiconductor  
General Characteristics  
Table 4-1 Absolute Maximum Ratings  
Characteristic  
Supply voltage, core  
Symbol  
Min  
Max  
Unit  
1
VSS – 0.3  
VSS + 2.0  
V
VDD  
2
V
VDDIO  
VSSIO – 0.3  
VSSA – 0.3  
VSSIO + 4.0  
VDDA + 4.0  
Supply voltage, IO  
Supply voltage, analog  
2
VDDIO  
Digital input voltages  
Analog input voltages (XTAL, EXTAL)  
VIN  
VSSIO – 0.3  
VSSA – 0.3  
VSSIO + 5.5  
VDDA + 0.3  
V
VINA  
Current drain per pin excluding VDD, GND  
Junction temperature  
I
8
mA  
°C  
TJ  
-40  
-55  
120  
150  
Storage temperature range  
TSTG  
°C  
1. VDD must not exceed VDDIO  
2. VDDIO and VDDA must not differ by more that 0.5V  
Table 4-2 Recommended Operating Conditions  
Characteristic  
Supply voltage for Logic Power  
Symbol  
VDD  
VDDIO  
VDDA  
TA  
Min  
1.62  
3.0  
3.0  
-40  
Max  
1.98  
3.6  
3.6  
85  
Unit  
V
Supply voltage for I/O Power  
Supply voltage for Analog Power  
Ambient operating temperature  
V
V
°C  
PLL clock frequency1  
fpll  
240  
120  
60  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
MHz  
Operating Frequency2  
fop  
Frequency of peripheral bus  
fipb  
Frequency of external clock  
Frequency of oscillator  
fclk  
240  
4
fosc  
2
Frequency of clock via XTAL  
Frequency of clock via EXTAL  
fxtal  
240  
4
fextal  
2
1.Assumes clock source is direct clock to EXTAL or crystal oscillator running 2-4MHz. PLL must be enabled, locked, and  
selected. The actual frequency depends on the source clock frequency and programming of the CGM module.  
56853 Technical Data, Rev. 6  
Freescale Semiconductor  
23  
2.Master clock is derived from on of the following four sources:  
fclk = fxtal when the source clock is the direct clock to EXTAL  
fclk = fpll when PLL is selected  
fclk = fosc when the source clock is the crystal oscillator and PLL is not selected  
fclk = fextal when the source clock is the direct clock to EXTAL and PLL is not selected  
1
Table 4-3 Thermal Characteristics  
128-pin LQFP  
Value  
Characteristic  
Symbol  
Unit  
Thermal resistance junction-to-ambient  
(estimated)  
θJA  
43.1  
°C/W  
I/O pin power dissipation  
Power dissipation  
PI/O  
PD  
User Determined  
W
W
W
PD = (IDD × VDD) + PI/O  
2
Maximum allowed PD  
PDMAX  
(TJ – TA) / RθJA  
1. See Section 6.1 for more detail.  
2. TJ = Junction Temperature  
TA = Ambient Temperature  
4.2 DC Electrical Characteristics  
Table 4-4 DC Electrical Characteristics  
Operating Conditions: V = V  
= V  
= 0 V, V = 1.62-1.98V, V  
= V  
= 3.0–3.6V, T = –40  
°
to +120  
°
C, C ≤  
50pF, f = 120MHz  
op  
SS  
SSIO  
SSA  
DD  
DDIO  
DDA  
A
L
Characteristic  
Input high voltage (XTAL/EXTAL)  
Input low voltage (XTAL/EXTAL)  
Input high voltage  
Symbol  
VIHC  
VILC  
VIH  
Min  
Typ  
VDDA  
Max  
Unit  
V
VDDA – 0.8  
VDDA + 0.3  
-0.3  
0.5  
5.5  
0.8  
1
V
2.0  
V
Input low voltage  
VIL  
-0.3  
V
Input current low (pullups disabled)  
Input current high (pullups disabled)  
Output tri-state current low  
Output tri-state current high  
Output High Voltage  
IIL  
-1  
μA  
μA  
μA  
μA  
V
IIH  
-1  
1
IOZL  
IOZH  
VOH  
VOL  
IOH  
-10  
10  
10  
0.4  
16  
-10  
VDDIO – 0.7  
Output Low Voltage  
8
V
Output High Current  
mA  
56853 Technical Data, Rev. 6  
24  
Freescale Semiconductor  
DC Electrical Characteristics  
Table 4-4 DC Electrical Characteristics (Continued)  
Operating Conditions: V = V  
= V  
= 0 V, V = 1.62-1.98V, V  
= V  
= 3.0–3.6V, T = –40° to +120°C, C 50pF, f = 120MHz  
SS  
SSIO  
SSA  
DD  
DDIO  
DDA A L op  
Characteristic  
Symbol  
IOL  
Min  
8
Typ  
Max  
16  
Unit  
mA  
pF  
Output Low Current  
Input capacitance  
Output capacitance  
CIN  
8
COUT  
12  
pF  
4
VDD supply current (Core logic, memories, peripherals)  
IDD  
Run 1  
70  
0.05  
5
110  
10  
14  
mA  
mA  
mA  
Deep Stop2  
Light Stop3  
VDDIO supply current (I/O circuity)  
IDDIO  
Run5  
Deep Stop2  
40  
0
50  
1.5  
mA  
mA  
VDDA supply current (analog circuity)  
Deep Stop2  
IDDA  
60  
2.5  
50  
120  
2.85  
μA  
V
Low Voltage Interrupt6  
VEI  
Low Voltage Interrupt Recovery Hysteresis  
VEIH  
POR  
mV  
V
Power on Reset7  
1.5  
2.0  
Note:  
Run (operating) IDD measured using external square wave clock source (fosc = 4MHz) into XTAL. All inputs 0.2V from rail; no  
DC loads; outputs unloaded. All ports configured as inputs; measured with all modules enabled. PLL set to 240MHz out.  
1. Running Core, performing 50% NOP and 50% FIR. Clock at 120 MHz.  
2. Deep Stop Mode - Operation frequency = 4 MHz, PLL set to 4 MHz, crystal oscillator and time of day module operating.  
3. Light Stop Mode - Operation frequency = 120 MHz, PLL set to 240 MHz, crystal oscillator and time of day module operating.  
4. IDD includes current for core logic, internal memories, and all internal peripheral logic circuitry.  
5. Running core and performing external memory access. Clock at 120 MHz.  
6. When VDD drops below VEI max value, an interrupt is generated.  
7. Power-on reset occurs whenever the digital supply drops below 1.8V. While power is ramping up, this signal remains active  
for as long as the internal 2.5V is below 1.8V no matter how long the ramp up rate is. The internally regulated voltage is  
typically 100 mV less than VDD during ramp up until 2.5V is reached, at which time it self-regulates.  
56853 Technical Data, Rev. 6  
Freescale Semiconductor  
25  
150  
MAC Mode1  
EMI Mode5  
120  
90  
60  
30  
0
20  
40  
120  
100  
60  
80  
Figure 4-1 Maximum Run I  
vs. Frequency (see Notes 1. and 5. in Table 4-4)  
DDTOTAL  
56853 Technical Data, Rev. 6  
26  
Freescale Semiconductor  
Supply Voltage Sequencing and Separation Cautions  
4.3 Supply Voltage Sequencing and Separation Cautions  
Figure 4-2 shows two situations to avoid in sequencing the V and V  
V
supplies.  
DD  
DDIO, DDA  
3.3V  
VDDIO, VDDA  
2
Supplies Stable  
1.8V  
VDD  
1
0
Time  
Notes: 1. VDD rising before VDDIO, VDDA  
2. VDDIO, VDDA rising much faster than VDD  
Figure 4-2 Supply Voltage Sequencing and Separation Cautions  
V
should not be allowed to rise early (1). This is usually avoided by running the regulator for the V  
DD  
DD  
supply (1.8V) from the voltage generated by the 3.3V V  
supply, see Figure 4-3. This keeps V from  
DDIO  
DD  
rising faster than V  
.
DDIO  
V
should not rise so late that a large voltage difference is allowed between the two supplies (2).  
DD  
Typically this situation is avoided by using external discrete diodes in series between supplies, as shown  
in Figure 4-3. The series diodes forward bias when the difference between V and V reaches  
DDIO  
DD  
approximately 2.1, causing V to rise as V  
ramps up. When the V regulator begins proper  
DD  
DDIO  
DD  
operation, the difference between supplies will typically be 0.8V and conduction through the diode chain  
reduces to essentially leakage current. During supply sequencing, the following general relationship  
should be adhered to:  
V
> V > (V  
- 2.1V)  
DDIO  
DD  
DDIO  
In practice, V  
is typically connected directly to V  
with some filtering.  
DDA  
DDIO  
56853 Technical Data, Rev. 6  
Freescale Semiconductor  
27  
VDDIO, VDDA  
3.3V  
Regulator  
Supply  
VDD  
1.8V  
Regulator  
Figure 4-3 Example Circuit to Control Supply Sequencing  
4.4 AC Electrical Characteristics  
Timing waveforms in Section 4.2 are tested with a VIL maximum of 0.8 V and a VIH minimum of 2.0 V  
for all pins except XTAL, which is tested using the input levels in Section 4.2. In Figure 4-4 the levels of  
VIH and VIL for an input signal are shown.  
Low  
VIL  
High  
VIH  
90%  
50%  
10%  
Input Signal  
Midpoint1  
Fall Time  
Note: The midpoint is VIL + (VIH – VIL)/2.  
Rise Time  
Figure 4-4 Input Signal Measurement References  
Figure 4-5 shows the definitions of the following signal states:  
Active state, when a bus or signal is driven, and enters a low impedance state.  
Tri-stated, when a bus or signal is placed in a high impedance state.  
Data Valid state, when a signal level has reached VOL or VOH.  
Data Invalid state, when a signal level is in transition between VOL and VOH.  
Data2 Valid  
Data2  
Data1 Valid  
Data1  
Data3 Valid  
Data3  
Data  
Tri-stated  
Data Invalid State  
Data Active  
Data Active  
Figure 4-5 Signal States  
56853 Technical Data, Rev. 6  
28  
Freescale Semiconductor  
External Clock Operation  
4.5 External Clock Operation  
The 56853 system clock can be derived from a crystal or an external system clock signal. To generate a  
reference frequency using the internal oscillator, a reference crystal must be connected between the  
EXTAL and XTAL pins.  
4.5.1  
Crystal Oscillator  
The internal oscillator is designed to interface with a parallel-resonant crystal resonator in the frequency  
range specified for the external crystal in Table 4-6. In Figure 4-6 a typical crystal oscillator circuit is  
shown. Follow the crystal supplier’s recommendations when selecting a crystal, because crystal  
parameters determine the component values required to provide maximum stability and reliable start-up.  
The crystal and associated components should be mounted as close as possible to the EXTAL and XTAL  
pins to minimize output distortion and start-up stabilization time.  
Crystal Frequency = 2–4 MHz (optimized for 4MHz)  
Sample External Crystal Parameters:  
EXTAL XTAL  
Rz = 10MΩ  
TOD_SEL bit in CGM must be set to 0  
Rz  
Figure 4-6 Crystal Oscillator  
4.5.2  
High Speed External Clock Source (> 4MHz)  
The recommended method of connecting an external clock is given in Figure 4-7. The external clock  
source is connected to XTAL and the EXTAL pin is held at ground, V  
bit in CGM must be set to 0.  
, or V  
/2. The TOD_SEL  
DDA  
DDA  
DSP56853  
XTAL  
EXTAL  
GND,VDDA  
or VDDA/2  
,
External  
Clock  
(up to 240MHz)  
Figure 4-7 Connecting a High Speed External Clock Signal using XTAL  
4.5.3  
Low Speed External Clock Source (2-4MHz)  
The recommended method of connecting an external clock is given in Figure 4-8. The external clock  
source is connected to XTAL and the EXTAL pin is held at V  
set to 0.  
/2. The TOD_SEL bit in CGM must be  
DDA  
56853 Technical Data, Rev. 6  
Freescale Semiconductor  
29  
DSP56853  
XTAL  
EXTAL  
External  
Clock  
VDDA/2  
(2-4MHz)  
Figure 4-8 Connecting a Low Speed External Clock Signal using XTAL  
4
Table 4-5 External Clock Operation Timing Requirements  
Operating Conditions: V = V  
= V  
= 0 V, V = 1.62-1.98V, V  
= V  
= 3.0–3.6V, T = –40° to +120°C, C 50pF, f = 120MHz  
SS  
SSIO  
SSA  
DD  
DDIO  
DDA A L op  
Characteristic  
Symbol  
fosc  
Min  
0
Typ  
Max  
240  
Unit  
MHz  
ns  
Frequency of operation (external clock driver)1  
Clock Pulse Width4  
tPW  
6.25  
External clock input rise time2, 4  
External clock input fall time3, 4  
trise  
TBD  
TBD  
ns  
tfall  
ns  
1. See Figure 4-7 for details on using the recommended connection of an external clock driver.  
2. External clock input rise time is measured from 10% to 90%.  
3. External clock input fall time is measured from 90% to 10%.  
4. Parameters listed are guaranteed by design.  
VIH  
External  
Clock  
90%  
50%  
10%  
90%  
50%  
10%  
tPW  
tPW  
VIL  
trise  
tfall  
Note: The midpoint is VIL + (VIH – VIL)/2.  
Figure 4-9 External Clock Timing  
56853 Technical Data, Rev. 6  
30  
Freescale Semiconductor  
External Memory Interface Timing  
Table 4-6 PLL Timing  
Operating Conditions: V = V  
= V  
= 0 V, V = 1.62-1.98V, V  
= V  
= 3.0–3.6V, T = –40° to +120°C, C 50pF, f = 120MHz  
SS  
SSIO  
SSA  
DD  
DDIO  
DDA A L op  
Characteristic  
Symbol  
fosc  
Min  
2
Typ  
4
Max  
4
Unit  
MHz  
MHz  
ms  
External reference crystal frequency for the PLL1  
PLL output frequency  
fclk  
40  
1
240  
10  
PLL stabilization time 2  
tplls  
1. An externally supplied reference clock should be as free as possible from any phase jitter for the PLL to work correctly.  
The PLL is optimized for 4MHz input crystal.  
2. This is the minimum time required after the PLL setup is changed to ensure reliable operation.  
4.6 External Memory Interface Timing  
The External Memory Interface is designed to access static memory and peripheral devices. Figure 4-10 shows  
sample timing and parameters that are detailed in Table 4-7.  
The timing of each parameter consists of both a fixed delay portion and a clock related portion; as well as user  
controlled wait states. The equation:  
t = D + P * (M + W)  
should be used to determine the actual time of each parameter. The terms in the above equation are defined as:  
t
parameter delay time  
D fixed portion of the delay, due to on-chip path delays.  
P
the period of the system clock, which determines the execution rate of the part (i.e. when the device is  
operating at 120 MHz, P = 8.33 ns).  
M Fixed portion of a clock period inherent in the design. This number is adjusted to account for possible  
clock duty cycle derating.  
W the sum of the applicable wait state controls. See the “Wait State Controls” column of Table 4-7 for  
the applicable controls for each parameter. See the EMI chapter of the 83x Peripheral Manual for  
details of what each wait state field controls.  
Some of the parameters contain two sets of numbers. These parameters have two different paths and clock edges  
that must be considered. Check both sets of numbers and use the smaller result. The appropriate entry may change  
if the operating frequency of the part changes.  
The timing of write cycles is different when WWS = 0 than when WWS > 0. Therefore, some parameters contain  
two sets of numbers to account for this difference. The “Wait States Configuration” column of Table 4-7 should be  
used to make the appropriate selection.  
56853 Technical Data, Rev. 6  
Freescale Semiconductor  
31  
A0-Axx,CS  
tRD  
tARDD  
tRDA  
tRDRD  
tARDA  
RD  
tWAC  
tWRRD  
tAWR  
tWRWR  
tWR  
tRDWR  
WR  
tDWR  
tDOH  
tRDD  
tDOS  
Data Out  
tAD  
tDRD  
Data In  
D0-D15  
Note: During read-modify-write instructions and internal instructions, the address lines do not change state.  
Figure 4-10 External Memory Interface Timing  
Table 4-7 External Memory Interface Timing  
Operating Conditions: V = V  
= V  
= 0 V, V = 1.62-1.98 V, V  
= V  
= 3.0–3.6V, T = –40× to +120×C, C £ 50pF, P = 8.333ns  
SS  
SSIO  
SSA  
DD  
DDIO  
DDA  
A
L
Wait States  
Configuration  
Wait States  
Controls  
Characteristic  
Symbol  
tAWR  
D
M
Unit  
ns  
WWS=0  
WWS>0  
WWS=0  
WWS>0  
WWS=0  
WWS=0  
WWS>0  
WWS>0  
-0.79  
-1.98  
-0.86  
-0.01  
-1.52  
- 5.69  
-2.10  
-4.66  
0.50  
0.69  
0.19  
0.00  
0.00  
0.25  
0.19  
0.50  
Address Valid to WR Asserted  
WWSS  
WWS  
WR Width Asserted to WR  
Deasserted  
tWR  
ns  
Data Out Valid to WR Asserted  
tDWR  
WWSS  
ns  
Valid Data Out Hold Time after WR  
Deasserted  
tDOH  
-1.47  
0.25  
WWSH  
WWS,WWSS  
WWSH  
ns  
ns  
-2.36  
-4.67  
0.19  
0.50  
Valid Data Out Set Up Time to WR  
Deasserted  
tDOS  
tWAC  
Valid Address after WR  
Deasserted  
-1.60  
0.25  
56853 Technical Data, Rev. 6  
32  
Freescale Semiconductor  
Reset, Stop, Wait, Mode Select, and Interrupt Timing  
Table 4-7 External Memory Interface Timing (Continued)  
Operating Conditions: V = V  
= V  
= 0 V, V = 1.62-1.98 V, V  
= V  
= 3.0–3.6V, T = –40× to +120×C, C £ 50pF, P = 8.333ns  
SS  
SSIO  
SSA  
DD  
DDIO  
DDA  
A
L
Wait States  
Configuration  
Wait States  
Controls  
Characteristic  
Symbol  
D
M
Unit  
tRDA  
- 0.44  
-2.07  
0.00  
1.00  
RWSH  
ns  
ns  
RD Deasserted to Address Invalid  
Address Valid to RD Deasserted  
tARDD  
RWSS,RWS  
Valid Input Data Hold after RD  
Deasserted  
N/A1  
1.00  
tDRD  
tRD  
0.00  
ns  
ns  
ns  
ns  
ns  
-1.34  
RWS  
RD Assertion Width  
-10.27  
-13.5  
1.00  
1.19  
Address Valid to Input Data Valid  
tAD  
RWSS,RWS  
RWSS  
tARDA  
tRDD  
tWRRD  
tRDRD  
tWRWR  
- 0.94  
0.00  
Address Valid to RD Asserted  
-9.53  
1.00  
1.19  
RD Asserted to Input Data Valid  
RWSS,RWS  
WWSH,RWSS  
RWSS,RWSH  
-12.64  
-0.75  
0.25  
0.00  
ns  
ns  
WR Deasserted to RD Asserted  
RD Deasserted to RD Asserted  
WR Deasserted to WR Asserted  
-0.162  
-0.44  
-0.11  
0.14  
WWS=0  
WWS>0  
0.75  
1.00  
0.50  
0.69  
WWSS, WWSH  
ns  
ns  
MDAR, BMDAR,  
RWSH, WWSS  
RD Deasserted to WR Asserted  
tRDWR  
-0.57  
1. N/A since device captures data before it deasserts RD  
2. If RWSS = RWSH = 0, RD does not deassert during back-to-back reads and D=0.00 should be used.  
4.7 Reset, Stop, Wait, Mode Select, and Interrupt Timing  
1, 2  
Table 4-8 Reset, Stop, Wait, Mode Select, and Interrupt Timing  
Operating Conditions: V = V  
= V  
= 0 V, V = 1.62-1.98V, V  
= V  
= 3.0–3.6V, T = –40  
°
to +120  
°
C, C ≤  
50pF, f = 120MHz  
op  
SS  
SSIO  
SSA  
DD  
DDIO  
DDA  
A
L
Characteristic  
Symbol  
Min  
Max  
Unit  
See Figure  
4-11  
RESET Assertion to Address, Data and Control  
Signals High Impedance  
tRAZ  
11  
ns  
Minimum RESET Assertion Duration3  
tRA  
tRDA  
tIRW  
30  
120T  
ns  
ns  
ns  
4-11  
4-11  
4-12  
RESET Deassertion to First External Address Output  
Edge-sensitive Interrupt Request Width  
1T + 3  
56853 Technical Data, Rev. 6  
Freescale Semiconductor  
33  
1, 2 (Continued)  
Table 4-8 Reset, Stop, Wait, Mode Select, and Interrupt Timing  
Operating Conditions: V = V  
= V  
= 0 V, V = 1.62-1.98V, V  
= V  
= 3.0–3.6V, T = –40  
°
to +120  
°
C, C ≤  
50pF, f = 120MHz  
op  
SS  
SSIO  
SSA  
DD  
DDIO  
DDA  
A
L
Characteristic  
Symbol  
tIDM  
Min  
18T  
14T  
18T  
14T  
22T  
18T  
Max  
Unit  
See Figure  
4-13  
IRQA, IRQB Assertion to External Data Memory  
Access Out Valid, caused by first instruction execution  
in the interrupt service routine  
ns  
tIDM -FAST  
tIG  
tIG -FAST  
tIRI  
tIRI -FAST  
tIW  
IRQA, IRQB Assertion to General Purpose Output  
Valid, caused by first instruction execution in the  
interrupt service routine  
ns  
ns  
4-13  
4-14  
IRQA Low to First Valid Interrupt Vector Address Out  
recovery from Wait State4  
Delay from IRQA Assertion (exiting Stop) to External  
Data Memory5  
4-15  
4-15  
1.5T  
ns  
Delay from IRQA Assertion (exiting Wait) to External  
Data Memory  
tIF  
Fast6  
Normal7  
18T  
22ET  
ns  
ns  
RSTO pulse width8  
normal operation  
internal reset mode  
tRSTO  
4-16  
128ET  
8ET  
1. In the formulas, T = clock cycle. For fop = 120MHz operation and fipb = 60MHz, T = 8.33ns.  
2. Parameters listed are guaranteed by design.  
3. At reset, the PLL is disabled and bypassed. The part is then put into Run mode and tclk assumes the period of the source  
clock, txtal, textal or tosc  
.
4. The minimum is specified for the duration of an edge-sensitive IRQA interrupt required to recover from the Stop state. This is  
not the minimum required so that the IRQA interrupt is accepted.  
5. The interrupt instruction fetch is visible on the pins only in Mode 3.  
6. Fast stop mode:  
Fast stop recovery applies when external clocking is in use (direct clocking to XTAL) or when fast stop mode recovery is  
requested (OMR bit 6 is set to 1). In both cases the PLL and the master clock are unaffected by stop mode entry. Recovery takes  
one less cycle and tclk will continue same value it had before stop mode was entered.  
7. Normal stop mode:  
As a power saving feature, normal stop mode disables and bypasses the PLL. Stop mode will then shut down the master  
clock, recovery will take an extra cycle (to restart the clock), and tclk will resume at the input clock source rate.  
8. ET = External Clock period, For an external crystal frequency of 8MHz, ET=125 ns.  
56853 Technical Data, Rev. 6  
34  
Freescale Semiconductor  
Reset, Stop, Wait, Mode Select, and Interrupt Timing  
RESET  
tRA  
tRAZ  
tRDA  
A0–A20,  
D0–D15  
First Fetch  
CS,  
RD, WR  
First Fetch  
Figure 4-11 Asynchronous Reset Timing  
IRQA  
IRQB  
tIRW  
Figure 4-12 External Interrupt Timing (Negative-Edge-Sensitive)  
A0–A20,  
CS,  
RD, WR  
First Interrupt Instruction Execution  
tIDM  
IRQA,  
IRQB  
a) First Interrupt Instruction Execution  
General  
Purpose  
I/O Pin  
tIG  
IRQA,  
IRQB  
b) General Purpose I/O  
Figure 4-13 External Level-Sensitive Interrupt Timing  
56853 Technical Data, Rev. 6  
Freescale Semiconductor  
35  
IRQA,  
IRQB  
tIRI  
A0–A20,  
CS,  
RD, WR  
First Interrupt Vector  
Instruction Fetch  
Figure 4-14 Interrupt from Wait State Timing  
tIW  
IRQA  
tIF  
A0–A20,  
CS,  
RD, WR  
First Instruction Fetch  
Not IRQA Interrupt Vector  
Figure 4-15 Recovery from Stop State Using Asynchronous Interrupt Timing  
RESET  
tRSTO  
Figure 4-16 Reset Output Timing  
4.8 Host Interface Port  
1
Table 4-9 Host Interface Port Timing  
Operating Conditions: VSS = VSSIO = VSSA = 0 V, VDD = 1.62-1.98V, VDDIO = VDDA = 3.0–3.6V, TA = –40° to +120°C, CL 50pF, fop = 120MHz  
Characteristic  
Symbol  
Min  
Max  
Unit  
See Figure  
TACKDV  
TACKDZ  
Access time  
Disable time  
3
13  
ns  
ns  
4-17  
4-17  
4-17,  
4-20  
TACKREQH  
TREQACKL  
Time to disassert  
Lead time  
3.5  
0
9
ns  
ns  
4-17  
4-20  
56853 Technical Data, Rev. 6  
36  
Freescale Semiconductor  
Host Interface Port  
1
Table 4-9 Host Interface Port Timing  
Operating Conditions: VSS = VSSIO = VSSA = 0 V, VDD = 1.62-1.98V, VDDIO = VDDA = 3.0–3.6V, TA = –40° to +120°C, CL 50pF, fop = 120MHz  
Characteristic  
Symbol  
Min  
Max  
Unit  
See Figure  
ns  
4-18  
4-19  
TRADV  
Access time  
13  
ns  
ns  
4-18  
4-19  
TRADX  
TRADZ  
Disable time  
Disable time  
5
3
4-18  
4-19  
TDACKS  
TACKDH  
Setup time  
Hold time  
3
1
ns  
ns  
4-20  
4-20  
4-21  
4-22  
TADSS  
TDSAH  
TWDS  
Setup time  
Hold time  
3
1
5
ns  
ns  
ns  
4-21  
4-22  
4-21  
4-22  
Pulse width  
Time to re-assert  
TACKREQL  
1. After second write in 16-bit mode  
2. After first write in 16-bit mode  
or after write in 8-bit mode  
ns  
ns  
4-17,  
4-20  
4T + 5  
5
5T + 9  
13  
1. The formulas: T = clock cycle. f ipb = 60MHz, T = 16.7ns.  
HACK  
TACKDZ  
TACKDV  
HD  
TACKREQL  
TREQACKL  
TACKREQH  
HREQ  
Figure 4-17 Controller-to-Host DMA Read Mode  
56853 Technical Data, Rev. 6  
Freescale Semiconductor  
37  
HA  
TRADX  
HCS  
HDS  
HRW  
TRADV  
TRADZ  
HD  
Figure 4-18 Single Strobe Read Mode  
HA  
TRADX  
HCS  
HWR  
HRD  
HD  
TRADZ  
TRADV  
Figure 4-19 Dual Strobe Read Mode  
HACK  
HD  
TACKDH  
TDACKS  
TACKREQL  
TREQACKL  
TACKREQH  
HREQ  
Figure 4-20 Host-to-Controller DMA Write Mode  
56853 Technical Data, Rev. 6  
38  
Freescale Semiconductor  
Host Interface Port  
HA  
TDSAH  
HCS  
HDS  
TWDS  
TDSAH  
HRW  
HD  
TADSS  
TADSS  
TDSAH  
Figure 4-21 Single Strobe Write Mode  
HA  
HCS  
TWDS  
HWR  
TDSAH  
TADSS  
HRD  
HD  
TADSS  
Figure 4-22 Dual Strobe Write Mode  
56853 Technical Data, Rev. 6  
Freescale Semiconductor  
39  
4.9 Serial Peripheral Interface (SPI) Timing  
1
Table 4-10 SPI Timing  
Operating Conditions: V = V  
= V  
= 0 V, V = 1.62-1.98V, V  
= V  
= 3.0–3.6V, T = –40° to +120°C, C 50pF, f = 120MHz  
SS  
SSIO  
SSA  
DD  
DDIO  
DDA A L op  
Characteristic  
Symbol  
Min  
Max  
Unit  
See Figure  
Cycle time  
Master  
Slave  
tC  
4-23, 4-24,  
4-25, 4-26  
25  
25  
ns  
ns  
Enable lead time  
Master  
Slave  
tELD  
tELG  
tCH  
tCL  
4-26  
4-26  
12.5  
ns  
ns  
Enable lag time  
Master  
Slave  
12.5  
ns  
ns  
Clock (SCLK) high time  
Master  
Slave  
ns  
ns  
4-23, 4-24,  
4-25, 4-26  
9
12.5  
Clock (SCLK) low time  
4-26  
Master  
Slave  
12  
12.5  
ns  
ns  
Data set-up time required for inputs  
Master  
Slave  
tDS  
4-23, 4-24,  
4-25, 4-26  
10  
2
ns  
ns  
Data hold time required for inputs  
Master  
Slave  
tDH  
4-23, 4-24,  
4-25, 4-26  
0
2
ns  
ns  
Access time (time to data active from high-impedance state)  
Slave  
tA  
ns  
ns  
4-26  
4-26  
5
2
15  
9
Disable time (hold time to high-impedance state)  
Slave  
tD  
ns  
ns  
Data valid for outputs  
Master  
Slave (after enable edge)  
tDV  
4-23, 4-24,  
4-25, 4-26  
2
14  
ns  
ns  
Data invalid  
Master  
Slave  
tDI  
tR  
tF  
4-23, 4-24,  
4-25, 4-26  
0
0
ns  
ns  
Rise time  
Master  
Slave  
4-23, 4-24,  
4-25, 4-26  
11.5  
10.0  
ns  
ns  
Fall time  
Master  
Slave  
4-23, 4-24,  
4-25, 4-26  
9.7  
9.0  
ns  
ns  
56853 Technical Data, Rev. 6  
40  
Freescale Semiconductor  
Serial Peripheral Interface (SPI) Timing  
SS  
(Input)  
SS is held High on master  
tC  
tR  
tF  
tCL  
SCLK (CPOL = 0)  
(Output)  
tCH  
tF  
tR  
tCL  
SCLK (CPOL = 1)  
(Output)  
tDH  
tCH  
tDS  
tCH  
MSB in  
tDI  
MISO  
(Input)  
Bits 14–1  
LSB in  
tDI(ref)  
tDV  
MOSI  
(Output)  
Master MSB out  
tF  
Bits 14–1  
Master LSB out  
tR  
Figure 4-23 SPI Master Timing (CPHA = 0)  
SS  
(Input)  
SS is held High on master  
tC  
tF  
tR  
tCL  
SCLK (CPOL = 0)  
(Output)  
tCH  
tF  
tCL  
SCLK (CPOL = 1)  
(Output)  
tDS  
tCH  
tR  
tDH  
MISO  
(Input)  
MSB in  
tDI  
Bits 14–1  
LSB in  
tDV(ref)  
tDV  
MOSI  
(Output)  
Master MSB out  
tF  
Bits 14– 1  
Master LSB out  
tR  
Figure 4-24 SPI Master Timing (CPHA = 1)  
56853 Technical Data, Rev. 6  
Freescale Semiconductor  
41  
SS  
(Input)  
tC  
tF  
tELG  
tR  
tCL  
SCLK (CPOL = 0)  
(Input)  
tCH  
tELD  
tCL  
SCLK (CPOL = 1)  
(Input)  
tF  
tA  
tR  
tD  
tCH  
MISO  
(Output)  
Slave MSB out  
tDH  
Bits 14–1  
tDV  
Slave LSB out  
tDI  
tDS  
tDI  
MOSI  
(Input)  
MSB in  
Bits 14–1  
LSB in  
Figure 4-25 SPI Slave Timing (CPHA = 0)  
SS  
(Input)  
tF  
tC  
tR  
tCL  
SCLK (CPOL = 0)  
(Input)  
tCH  
tELG  
tELD  
tCL  
SCLK (CPOL = 1)  
(Input)  
tDV  
tR  
tF  
tA  
tCH  
tD  
Slave LSB out  
tDI  
MISO  
(Output)  
Slave MSB out  
Bits 14–1  
tDV  
tDS  
tDH  
MOSI  
(Input)  
MSB in  
Bits 14–1  
LSB in  
Figure 4-26 SPI Slave Timing (CPHA = 1)  
56853 Technical Data, Rev. 6  
42  
Freescale Semiconductor  
Quad Timer Timing  
4.10 Quad Timer Timing  
1, 2  
Table 4-11 Quad Timer Timing  
Operating Conditions: V = V  
= V  
= 0 V, V = 1.62-1.98V, V  
= V  
= 3.0–3.6V, T = –40° to +120°C, C 50pF, f = 120MHz  
SS  
SSIO  
SSA  
DD  
DDIO  
DDA A L op  
Characteristic  
Symbol  
PIN  
Min  
Max  
Unit  
ns  
Timer input period  
2T + 3  
1T + 3  
2T - 3  
1T - 3  
Timer input high/low period  
Timer output period  
PINHL  
ns  
POUT  
ns  
Timer output high/low period  
POUTHL  
ns  
1. In the formulas listed, T = clock cycle. For fop = 120MHz operation and fipb = 60MHz, T = 8.33ns.  
2. Parameters listed are guaranteed by design.  
Timer Inputs  
PIN  
PINHL  
PINHL  
Timer Outputs  
POUT  
POUTHL  
POUTHL  
Figure 4-27 Timer Timing  
4.11 Enhanced Synchronous Serial Interface (ESSI) Timing  
1
Table 4-12 ESSI Master Mode Switching Characteristics  
Operating Conditions: V = V  
SS  
= V  
= 0 V, V = 1.62-1.98V, V  
= V  
= 3.0–3.6V, T = –40° to +120°C, C 50pF, f = 120MHz  
SSIO  
SSA  
DD  
DDIO  
DDA A L op  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
152  
SCK frequency  
fs  
MHz  
SCK period3  
tSCKW  
tSCKH  
tSCKL  
66.7  
ns  
ns  
ns  
33.44  
SCK high time  
33.44  
SCK low time  
Output clock rise/fall time  
4
ns  
ns  
Delay from SCK high to SC2 (bl) high - Master5  
tTFSBHM  
-1.0  
1.0  
56853 Technical Data, Rev. 6  
Freescale Semiconductor  
43  
1
Table 4-12 ESSI Master Mode Switching Characteristics (Continued)  
Operating Conditions: V = V  
= V  
= 0 V, V = 1.62-1.98V, V  
= V  
= 3.0–3.6V, T = –40° to +120°C, C 50pF, f = 120MHz  
SS  
SSIO  
SSA  
DD  
DDIO  
DDA A L op  
Parameter  
Symbol  
Min  
Typ  
Max  
Units  
Delay from SCK high to SC2 (wl) high - Master5  
Delay from SC0 high to SC1 (bl) high - Master5  
Delay from SC0 high to SC1 (wl) high - Master5  
Delay from SCK high to SC2 (bl) low - Master5  
Delay from SCK high to SC2 (wl) low - Master5  
Delay from SC0 high to SC1 (bl) low - Master5  
tTFSWHM  
-1.0  
1.0  
ns  
tRFSBHM  
tRFSWHM  
tTFSBLM  
tTFSWLM  
tRFSBLM  
tRFSWLM  
tTXEM  
-1.0  
-1.0  
-1.0  
-1.0  
-1.0  
-1.0  
-0.1  
-0.1  
-0.1  
-4  
1.0  
1.0  
1.0  
1.0  
1.0  
1.0  
2
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Delay from SC0 high to SC1 (wl) low - Master5  
SCK high to STD enable from high impedance - Master  
SCK high to STD valid - Master  
tTXVM  
2
SCK high to STD not valid - Master  
SCK high to STD high impedance - Master  
SRD Setup time before SC0 low - Master  
SRD Hold time after SC0 low - Master  
tTXNVM  
tTXHIM  
tSM  
0
4
tHM  
4
Synchronous Operation (in addition to standard internal clock parameters)  
SRD Setup time before SCK low - Master  
SRD Hold time after SCK low - Master  
tTSM  
tTHM  
4
4
ns  
ns  
1. Master mode is internally generated clocks and frame syncs  
2. Max clock frequency is IP_clk/4 = 60MHz / 4 = 15MHz for an 120MHz part.  
3. All the timings for the ESSI are given for a non-inverted serial clock polarity (TSCKP=0 in SCR2 and RSCKP=0 in SCSR)  
and a non-inverted frame sync (TFSI=0 in SCR2 and RFSI=0 in SCSR). If the polarity of the clock and/or the frame sync  
have been inverted, all the timings remain valid by inverting the clock signal SCK/SC0 and/or the frame sync SC2/SC1 in  
the tables and in the figures.  
4. 50 percent duty cycle  
5. bl = bit length; wl = word length  
56853 Technical Data, Rev. 6  
44  
Freescale Semiconductor  
Enhanced Synchronous Serial Interface (ESSI) Timing  
tSCKW  
tSCKH  
tSCKL  
SCK output  
SC2 (bl) output  
SC2 (wl) output  
tTFSBHM  
tTFSBLM  
tTFSWHM  
tTFSWLM  
tTXVM  
tTXEM  
tTXNVM  
tTXHIM  
First Bit  
Last Bit  
STD  
SC0 output  
tRFSBHM  
tRFBLM  
SC1 (bl) output  
SC1 (wl) output  
tRFSWHM  
tRFSWLM  
tTSM  
tSM  
tHM  
tTHM  
SRD  
Figure 4-28 Master Mode Timing Diagram  
1
Table 4-13 ESSI Slave Mode Switching Characteristics  
Operating Conditions: V = V  
SS  
= V  
= 0 V, V = 1.62-1.98V, V  
= V  
= 3.0–3.6V, T = –40° to +120°C, C 50pF, f = 120MHz  
SSIO  
SSA  
DD  
DDIO  
DDA A L op  
Parameter  
Symbol  
fs  
Min  
Typ  
Max  
Units  
MHz  
ns  
152  
SCK frequency  
SCK period3  
tSCKW  
tSCKH  
tSCKL  
66.7  
33.44  
SCK high time  
ns  
33.44  
SCK low time  
ns  
Output clock rise/fall time  
4
ns  
ns  
Delay from SCK high to SC2 (bl) high - Slave5  
tTFSBHS  
-1  
29  
56853 Technical Data, Rev. 6  
Freescale Semiconductor  
45  
1
Table 4-13 ESSI Slave Mode Switching Characteristics (Continued)  
Operating Conditions: V = V  
= V  
= 0 V, V = 1.62-1.98V, V  
= V  
= 3.0–3.6V, T = –40° to +120°C, C 50pF, f = 120MHz  
SS  
SSIO  
SSA  
DD  
DDIO  
DDA A L op  
Parameter  
Symbol  
tTFSWHS  
tRFSBHS  
tRFSWHS  
tTFSBLS  
tTFSWLS  
tRFSBLS  
tRFSWLS  
tTXES  
Min  
-1  
-1  
-1  
-29  
-29  
-29  
-29  
4
Typ  
Max  
29  
29  
29  
29  
29  
29  
29  
15  
15  
15  
15  
15  
15  
Units  
ns  
Delay from SCK high to SC2 (wl) high - Slave5  
Delay from SC0 high to SC1 (bl) high - Slave5  
Delay from SC0 high to SC1 (wl) high - Slave5  
Delay from SCK high to SC2 (bl) low - Slave5  
Delay from SCK high to SC2 (wl) low - Slave5  
Delay from SC0 high to SC1 (bl) low - Slave5  
ns  
ns  
ns  
ns  
ns  
Delay from SC0 high to SC1 (wl) low - Slave5  
ns  
SCK high to STD enable from high impedance - Slave  
ns  
SCK high to STD valid - Slave  
tTXVS  
ns  
SC2 high to STD enable from high impedance (first bit) - Slave  
SC2 high to STD valid (first bit) - Slave  
SCK high to STD not valid - Slave  
tFTXES  
tFTXVS  
tTXNVS  
tTXHIS  
4
ns  
4
ns  
4
ns  
SCK high to STD high impedance - Slave  
SRD Setup time before SC0 low - Slave  
SRD Hold time after SC0 low - Slave  
4
ns  
tSS  
4
ns  
tHS  
4
ns  
Synchronous Operation (in addition to standard external clock parameters)  
SRD Setup time before SCK low - Slave  
SRD Hold time after SCK low - Slave  
tTSS  
tTHS  
4
4
ns  
ns  
1. Slave mode is externally generated clocks and frame syncs  
2. Max clock frequency is IP_clk/4 = 60MHz / 4 = 15MHz for a 120MHz part.  
3. All the timings for the ESSI are given for a non-inverted serial clock polarity (TSCKP=0 in SCR2 and RSCKP=0 in SCSR)  
and a non-inverted frame sync (TFSI=0 in SCR2 and RFSI=0 in SCSR). If the polarity of the clock and/or the frame sync  
have been inverted, all the timings remain valid by inverting the clock signal SCK/SC0 and/or the frame sync SC2/SC1 in  
the tables and in the figures.  
4. 50 percent duty cycle  
5. bl = bit length; wl = word length  
56853 Technical Data, Rev. 6  
46  
Freescale Semiconductor  
Serial Communication Interface (SCI) Timing  
tSCKW  
tSCKH  
tSCKL  
SCK input  
SC2 (bl) input  
SC2 (wl) input  
tTFSBLS  
tTFSBHS  
tTFSWHS  
tTFSWLS  
tFTXVS  
tFTXES  
tTXVS  
tTXNVS  
tTXES  
tTXHIS  
First Bit  
Last Bit  
STD  
SC0 input  
tRFBLS  
tRFSBHS  
SC1 (bl) input  
SC1 (wl) input  
tRFSWHS  
tRFSWLS  
tTSS  
tSS  
tHS  
tTHS  
SRD  
Figure 4-29 Slave Mode Clock Timing  
4.12 Serial Communication Interface (SCI) Timing  
4
Table 4-14 SCI Timing  
Operating Conditions: V = V  
= V  
= 0 V, V = 1.62-1.98V, V  
DD  
= V  
= 3.0–3.6V, T = –40  
°
to +120  
°
C, C ≤  
50pF, f = 120MHz  
op  
SS  
SSIO  
SSA  
DDIO  
DDA  
A
L
Characteristic  
Symbol  
Min  
Max  
Unit  
Baud Rate1  
BR  
(fMAX)/(32)  
1.04/BR  
Mbps  
RXD2 Pulse Width  
TXD3 Pulse Width  
RXDPW  
TXDPW  
0.965/BR  
0.965/BR  
ns  
ns  
1.04/BR  
1. fMAX is the frequency of operation of the system clock in MHz.  
2. The RXD pin in SCI0 is named RXD0 and the RXD pin in SCI1 is named RXD1.  
3. The TXD pin in SCI0 is named TXD0 and the TXD pin in SCI1 is named TXD1.  
4. Parameters listed are guaranteed by design.  
56853 Technical Data, Rev. 6  
Freescale Semiconductor  
47  
RXD  
SCI receive  
data pin  
RXDPW  
(Input)  
Figure 4-30 RXD Pulse Width  
TXD  
SCI receive  
data pin  
TXDPW  
(Input)  
Figure 4-31 TXD Pulse Width  
4.13 JTAG Timing  
1, 3  
Table 4-15 JTAG Timing  
Operating Conditions: V = V  
= V  
= 0 V, V = 1.62-1.98V, V  
= V  
= 3.0–3.6V, T = –40  
°
to +120  
°
C, C ≤  
50pF, f = 120MHz  
op  
SS  
SSIO  
SSA  
DD  
DDIO  
DDA  
A
L
Characteristic  
TCK frequency of operation2  
Symbol  
fOP  
Min  
Max  
30  
Unit  
MHz  
ns  
DC  
33.3  
16.6  
3
TCK cycle time  
tCY  
TCK clock pulse width  
TMS, TDI data setup time  
TMS, TDI data hold time  
TCK low to TDO data valid  
TCK low to TDO tri-state  
TRST assertion time  
DE assertion time  
tPW  
ns  
tDS  
ns  
tDH  
3
ns  
tDV  
12  
10  
ns  
tTS  
ns  
tTRST  
tDE  
35  
4T  
ns  
ns  
1. Timing is both wait state and frequency dependent. For the values listed, T = clock cycle. For 120MHz  
operation, T = 8.33ns.  
2. TCK frequency of operation must be less than 1/4 the processor rate.  
3. Parameters listed are guaranteed by design.  
56853 Technical Data, Rev. 6  
48  
Freescale Semiconductor  
JTAG Timing  
tCY  
tPW  
tPW  
VIH  
VM  
VIL  
VM  
TCK  
(Input)  
VM = VIL + (VIH – VIL)/2  
Figure 4-32 Test Clock Input Timing Diagram  
TCK  
(Input)  
tDS  
tDH  
TDI  
TMS  
Input Data Valid  
(Input)  
tDV  
TDO  
(Output)  
Output Data Valid  
tTS  
TDO  
(Output)  
Figure 4-33 Test Access Port Timing Diagram  
TRST  
(Input)  
tTRST  
Figure 4-34 TRST Timing Diagram  
DE  
tDE  
Figure 4-35 Enhanced OnCE—Debug Event  
56853 Technical Data, Rev. 6  
Freescale Semiconductor  
49  
4.14 GPIO Timing  
1, 2  
Table 4-16 GPIO Timing  
Operating Conditions: V = V  
= V  
= 0 V, V = 1.62-1.98V, V  
= V  
= 3.0–3.6V, T = –40  
°
to +120  
°
C, C ≤  
50pF, f = 120MHz  
op  
SS  
SSIO  
SSA  
DD  
DDIO  
DDA  
A
L
Characteristic  
Symbol  
PIN  
Min  
Max  
Unit  
ns  
GPIO input period  
2T + 3  
1T + 3  
2T - 3  
1T - 3  
GPIO input high/low period  
GPIO output period  
PINHL  
ns  
POUT  
ns  
GPIO output high/low period  
POUTHL  
ns  
1. In the formulas listed, T = clock cycle. For fop = 120MHz operation and fipb = 60MHz, T = 8.33ns  
2. Parameters listed are guaranteed by design.  
GPIO Inputs  
PIN  
PINHL  
PINHL  
GPIO Outputs  
POUT  
POUTHL  
POUTHL  
Figure 4-36 GPIO Timing  
56853 Technical Data, Rev. 6  
50  
Freescale Semiconductor  
Package and Pin-Out Information 56853  
Part 5 Packaging  
5.1 Package and Pin-Out Information 56853  
This section contains package and pin-out information for the 128-pin LQFP configuration of the 56853.  
PIN 65  
V
V
V
V
A15  
A14  
HDS  
HCS  
HREQ  
HACK  
D6  
DD  
PIN 103  
SS  
SSIO  
DDIO  
D7  
D8  
D9  
D10  
A13  
A12  
V
SSIO  
V
V
DDIO  
DD  
V
TCK  
TMS  
TDI  
SS  
V
V
DDIO  
SSIO  
TDO  
TRST  
DE  
STD0  
SRD0  
SCK0  
SC00  
SC01  
SC02  
V
SS  
V
DD  
A11  
A10  
A9  
A8  
V
D11  
D12  
V
DDIO  
V
SSIO  
SSIO  
D13  
D14  
ORIENTATION  
MARK  
V
DDIO  
HD7  
HD6  
PIN 39  
D15  
PIN 1  
Figure 5-1 Top View, 56853 128-pin LQFP Package  
56853 Technical Data, Rev. 6  
Freescale Semiconductor  
51  
Table 5-1 56853 Pin Identification by Pin Number  
Pin No.  
Signal Name  
Pin No. Signal Name Pin No.  
Signal Name  
Pin No.  
Signal Name  
1
2
3
4
MISO  
MOSI  
SCK  
SS  
33  
34  
35  
36  
CLKO  
RSTO  
RESET  
HD3  
65  
66  
67  
68  
RXD0  
TXDO  
A16  
97  
98  
TIO3  
TIO2  
TIO1  
99  
A17  
100  
V
DDIO  
5
6
V
37  
38  
HD4  
HD5  
69  
70  
A18  
A19  
A20  
101  
102  
TIO0  
DDIO  
V
V
SSIO  
SSIO  
HDS  
HCS  
7
8
RD  
39  
40  
HD6  
HD7  
71  
72  
103  
104  
WR  
V
DDIO  
9
A0  
A1  
41  
42  
V
73  
74  
D0  
105  
106  
HREQ  
HACK  
DDIO  
10  
V
V
SSIO  
SSIO  
11  
12  
13  
A2  
A3  
43  
44  
45  
A8  
75  
76  
77  
CS0  
CS1  
CS2  
107  
108  
109  
D6  
D7  
D8  
A9  
V
A10  
A11  
DD  
14  
15  
16  
17  
18  
19  
V
46  
47  
48  
49  
50  
51  
78  
79  
80  
81  
82  
83  
CS3  
110  
111  
112  
113  
114  
115  
D9  
SS  
MODA  
MODB  
MODC  
V
V
V
D10  
DD  
DD  
DD  
V
V
DD  
SS  
DE  
V
V
SS  
SS  
V
TRST  
TDO  
HA0  
HA1  
V
DDIO  
DDIO  
V
V
SSIO  
SSIO  
20  
21  
22  
IRQA  
IRQB  
52  
53  
54  
TDI  
TMS  
TCK  
84  
85  
86  
HA2  
HRWB  
D1  
116  
117  
118  
STD0  
SRD0  
SCK0  
V
DDA  
23  
24  
V
55  
56  
V
87  
88  
D2  
D3  
119  
120  
SC00  
SC01  
SSA  
DDIO  
XTAL  
V
SSIO  
25  
26  
27  
EXTAL  
A4  
57  
58  
59  
A12  
A13  
A14  
89  
90  
91  
D4  
D5  
121  
122  
123  
SC02  
D11  
A5  
V
V
D12  
DDIO  
DDIO  
28  
29  
30  
31  
32  
A6  
A7  
60  
61  
62  
63  
64  
A15  
92  
93  
94  
95  
96  
124  
125  
126  
127  
128  
V
DDIO  
V
V
V
SSIO  
DDIO  
SSIO  
HD0  
HD1  
HD2  
V
RXD1  
TXD1  
D13  
D14  
D15  
SSIO  
V
SS  
V
V
SS  
DD  
56853 Technical Data, Rev. 6  
52  
Freescale Semiconductor  
Package and Pin-Out Information 56853  
102  
65  
64  
103  
128  
39  
38  
MILLIMETERS  
DIM  
MIN  
---  
MAX  
1.60  
0.15  
1.45  
0.27  
0.23  
0.20  
0.16  
A
A1  
A2  
b
b1  
c
0.05  
1.35  
0.17  
0.17  
0.09  
0.09  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M,  
1994.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DATUM PLANE H IS LOCATED AT BOTTOM OF LEAD AND IS  
COINCIDENT WITH THE LEAD WHERE THE LEAD EXITS THE  
PLASTIC BODY AT THE BOTTOM OF THE PARTING LINE.  
4. DATUMS A, B, AND D TO BE DETERMINED AT DATUM PLANE  
H.  
c1  
D
22.00 BSC  
D1  
e
E
E1  
L
L1  
L2  
S
20.00BSC  
0.50 BSC  
16.00 BSC  
14.00 BSC  
5. DIMENSIONS D AND E TO BE DETERMINED AT SEATING  
PLANE C.  
6. DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD  
PROTRUSION. ALLOWABLE PROTRUSION IS 0.25 PER SIDE.  
DIMENSIONS D1 AND E1 DO INCLUDE MOLD MISMATCH  
AND ARE DETERMINED AT DATUM PLANE H.  
7. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION.  
DAMBAR PROTRUSION SHALL NOT CAUSE THE b  
DIMENSION TO EXCEED 0.35.  
0.45  
0.75  
1.00 REF  
0.50 REF  
0.20  
0.08  
---  
---  
R1  
R2  
0
0.08  
0.20  
7o  
---  
0o  
0o  
01  
02  
11o  
13o  
Case Outline - 1129-01  
Figure 5-2 128-pin LQFP Mechanical Information  
Please see www.freescale.com for the most current case outline.  
56853 Technical Data, Rev. 6  
Freescale Semiconductor  
53  
Part 6 Design Considerations  
6.1 Thermal Design Considerations  
An estimation of the chip junction temperature, TJ, in °C can be obtained from the equation:  
Equation 1: TJ = TA + (PD x RθJA  
)
Where:  
TA = ambient temperature °C  
RθJA = package junction-to-ambient thermal resistance °C/W  
PD = power dissipation in package  
Historically, thermal resistance has been expressed as the sum of a junction-to-case thermal resistance and a  
case-to-ambient thermal resistance:  
Equation 2: RθJA = RθJC + RθCA  
Where:  
RθJA = package junction-to-ambient thermal resistance °C/W  
RθJC = package junction-to-case thermal resistance °C/W  
RθCA = package case-to-ambient thermal resistance °C/W  
RθJC is device-related and cannot be influenced by the user. The user controls the thermal environment to change  
the case-to-ambient thermal resistance, RθCA. For example, the user can change the air flow around the device, add  
a heat sink, change the mounting arrangement on the Printed Circuit Board (PCB), or otherwise change the thermal  
dissipation capability of the area surrounding the device on the PCB. This model is most useful for ceramic packages  
with heat sinks; some 90% of the heat flow is dissipated through the case to the heat sink and out to the ambient  
environment. For ceramic packages, in situations where the heat flow is split between a path to the case and an  
alternate path through the PCB, analysis of the device thermal performance may need the additional modeling  
capability of a system level thermal simulation tool.  
The thermal performance of plastic packages is more dependent on the temperature of the PCB to which the package  
is mounted. Again, if the estimations obtained from RθJA do not satisfactorily answer whether the thermal  
performance is adequate, a system level model may be appropriate.  
A complicating factor is the existence of three common definitions for determining the junction-to-case thermal  
resistance in plastic packages:  
Measure the thermal resistance from the junction to the outside surface of the package (case) closest to the  
chip mounting area when that surface has a proper heat sink. This is done to minimize temperature variation  
across the surface.  
Measure the thermal resistance from the junction to where the leads are attached to the case. This definition  
is approximately equal to a junction to board thermal resistance.  
Use the value obtained by the equation (TJ – TT)/PD where TT is the temperature of the package case  
determined by a thermocouple.  
As noted above, the junction-to-case thermal resistances quoted in this data sheet are determined using the first  
definition. From a practical standpoint, that value is also suitable for determining the junction temperature from a  
case thermocouple reading in forced convection environments. In natural convection, using the junction-to-case  
56853 Technical Data, Rev. 6  
54  
Freescale Semiconductor  
Electrical Design Considerations  
thermal resistance to estimate junction temperature from a thermocouple reading on the case of the package will  
estimate a junction temperature slightly hotter than actual. Hence, the new thermal metric, Thermal Characterization  
Parameter, or ΨJT, has been defined to be (TJ – TT)/PD. This value gives a better estimate of the junction temperature  
in natural convection when using the surface temperature of the package. Remember that surface temperature  
readings of packages are subject to significant errors caused by inadequate attachment of the sensor to the surface  
and to errors caused by heat loss to the sensor. The recommended technique is to attach a 40-gauge thermocouple  
wire and bead to the top center of the package with thermally conductive epoxy.  
6.2 Electrical Design Considerations  
CAUTION  
This device contains protective circuitry to guard against  
damage due to high static voltage or electrical fields.  
However, normal precautions are advised to avoid  
application of any voltages higher than maximum rated  
voltages to this high-impedance circuit. Reliability of  
operation is enhanced if unused inputs are tied to an  
appropriate voltage level.  
Use the following list of considerations to assure correct operation:  
Provide a low-impedance path from the board power supply to each VDD pin on the device, and from the  
board ground to each VSS (GND) pin.  
The minimum bypass requirement is to place six 0.01–0.1 μF capacitors positioned as close as possible to  
the package supply pins. The recommended bypass configuration is to place one bypass capacitor on each  
of the ten VDD/VSS pairs, including VDDA/VSSA.  
Ensure that capacitor leads and associated printed circuit traces that connect to the chip VDD and VSS (GND)  
pins are less than 0.5 inch per capacitor lead.  
Use at least a four-layer Printed Circuit Board (PCB) with two inner layers for VDD and GND.  
Bypass the VDD and GND layers of the PCB with approximately 100 μF, preferably with a high-grade  
capacitor such as a tantalum capacitor.  
Because the device’s output signals have fast rise and fall times, PCB trace lengths should be minimal.  
Consider all device loads as well as parasitic capacitance due to PCB traces when calculating capacitance.  
This is especially critical in systems with higher capacitive loads that could create higher transient currents  
in the VDD and GND circuits.  
All inputs must be terminated (i.e., not allowed to float) using CMOS levels.  
Take special care to minimize noise levels on the VDDA and VSSA pins.  
When using Wired-OR mode on the SPI or the IRQx pins, the user must provide an external pull-up device.  
56853 Technical Data, Rev. 6  
Freescale Semiconductor  
55  
Designs that utilize the TRST pin for JTAG port or Enhance OnCE module functionality (such as  
development or debugging systems) should allow a means to assert TRST whenever RESET is asserted, as  
well as a means to assert TRST independently of RESET. Designs that do not require debugging  
functionality, such as consumer products, should tie these pins together.  
The internal POR (Power on Reset) will reset the part at power on with reset asserted or pulled high but  
requires that TRST be asserted at power on.  
56853 Technical Data, Rev. 6  
56  
Freescale Semiconductor  
Electrical Design Considerations  
Part 7 Ordering Information  
Table 7-1 lists the pertinent information needed to place an order. Consult a Freescale Semiconductor  
sales office or authorized distributor to determine availability and to order parts.  
Table 7-1 56853 Ordering Information  
Supply  
Voltage  
Pin  
Count  
Frequency  
(MHz)  
Part  
Package Type  
Order Number  
DSP56853  
1.8V, 3.3V  
1.8V, 3.3V  
Low-Profile Quad Flat Pack (LQFP)  
128  
128  
120  
120  
DSP56853FG120  
DSP56853  
Low-Profile Quad Flat Pack (LQFP)  
DSP56853FGE *  
*This package is RoHS compliant.  
56853 Technical Data, Rev. 6  
Freescale Semiconductor  
57  
56853 Technical Data, Rev. 6  
58  
Freescale Semiconductor  
Electrical Design Considerations  
56853 Technical Data, Rev. 6  
Freescale Semiconductor  
59  
How to Reach Us:  
Home Page:  
www.freescale.com  
E-mail:  
support@freescale.com  
USA/Europe or Locations Not Listed:  
Freescale Semiconductor  
Technical Information Center, CH370  
1300 N. Alma School Road  
Chandler, Arizona 85224  
+1-800-521-6274 or +1-480-768-2130  
support@freescale.com  
Europe, Middle East, and Africa:  
Freescale Halbleiter Deutschland GmbH  
Technical Information Center  
Schatzbogen 7  
81829 Muenchen, Germany  
+44 1296 380 456 (English)  
+46 8 52200080 (English)  
+49 89 92103 559 (German)  
+33 1 69 35 48 48 (French)  
support@freescale.com  
Japan:  
Freescale Semiconductor Japan Ltd.  
Headquarters  
ARCO Tower 15F  
1-8-1, Shimo-Meguro, Meguro-ku,  
Tokyo 153-0064, Japan  
0120 191014 or +81 3 5437 9125  
support.japan@freescale.com  
Information in this document is provided solely to enable system and  
software implementers to use Freescale Semiconductor products. There are  
no express or implied copyright licenses granted hereunder to design or  
fabricate any integrated circuits or integrated circuits based on the  
information in this document.  
Asia/Pacific:  
Freescale Semiconductor Hong Kong Ltd.  
Technical Information Center  
2 Dai King Street  
Tai Po Industrial Estate  
Tai Po, N.T., Hong Kong  
+800 2666 8080  
Freescale Semiconductor reserves the right to make changes without further  
notice to any products herein. Freescale Semiconductor makes no warranty,  
representation or guarantee regarding the suitability of its products for any  
particular purpose, nor does Freescale Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation consequential or  
incidental damages. “Typical” parameters that may be provided in Freescale  
Semiconductor data sheets and/or specifications can and do vary in different  
applications and actual performance may vary over time. All operating  
parameters, including “Typicals”, must be validated for each customer  
application by customer’s technical experts. Freescale Semiconductor does  
not convey any license under its patent rights nor the rights of others.  
Freescale Semiconductor products are not designed, intended, or authorized  
for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other  
application in which the failure of the Freescale Semiconductor product could  
create a situation where personal injury or death may occur. Should Buyer  
purchase or use Freescale Semiconductor products for any such unintended  
or unauthorized application, Buyer shall indemnify and hold Freescale  
Semiconductor and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and  
reasonable attorney fees arising out of, directly or indirectly, any claim of  
personal injury or death associated with such unintended or unauthorized  
use, even if such claim alleges that Freescale Semiconductor was negligent  
regarding the design or manufacture of the part.  
support.asia@freescale.com  
For Literature Requests Only:  
Freescale Semiconductor Literature Distribution Center  
P.O. Box 5405  
Denver, Colorado 80217  
1-800-441-2447 or 303-675-2140  
Fax: 303-675-2150  
LDCForFreescaleSemiconductor@hibbertgroup.com  
Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor,  
Inc. All other product or service names are the property of their respective owners.  
This product incorporates SuperFlash® technology licensed from SST.  
© Freescale Semiconductor, Inc. 2005. All rights reserved.  
DSP56853  
Rev. 6  
01/2007  
 复制成功!