ESMT
(Preliminary)
F25S04PA
Read (33MHz)
The Read instruction supports up to 33 MHz, it outputs the data
starting from the specified address location. The data output
stream is continuous through all addresses until terminated by a
the data from address location 7FFFFH had been read, the next
output will be from address location 00000H.
The Read instruction is initiated by executing an 8-bit command,
low to high transition on CE . The internal address pointer will
automatically increment until the highest memory address is
reached. Once the highest memory address is reached, the
address pointer will automatically increment to the beginning
(wrap-around) of the address space, i.e. for 4Mbit density, once
03H, followed by address bits [A23 -A0]. CE must remain active
low for the duration of the Read cycle. See Figure 2 for the Read
sequence.
Figure 2: Read Sequence
Fast Read (50 MHz ~ 100 MHz)
The Fast Read instruction supporting up to 100 MHz is initiated
by executing an 8-bit command, 0BH, followed by address bits
all addresses until terminated by a low to high transition on CE .
The internal address pointer will automatically increment until the
highest memory address is reached. Once the highest memory
address is reached, the address pointer will automatically
increment to the beginning (wrap-around) of the address space,
i.e. for 4Mbit density, once the data from address location
7FFFFH has been read, the next output will be from address
location 000000H.
[A23 -A0] and a dummy byte. CE must remain active low for the
duration of the Fast Read cycle. See Figure 3 for the Fast Read
sequence.
Following a dummy byte (8 clocks input dummy cycle), the Fast
Read instruction outputs the data starting from the specified
address location. The data output stream is continuous through
CE
0 1 2 3 4 5 6 7 8
15 16
23 24
31 32
39 40
47 48
MODE3
MODE0
55 56
63 64
71 72
80
SCK
SI
0B
ADD.
MSB
ADD.
ADD.
X
MSB
N
N+1
DOUT
N+2
DOUT
N+3
DOU T
N+4
DOU T
HIGH IMPENANCE
SO
DOU T
MSB
Note : X = Dummy Byte : 8 Clocks Input Dummy (VIL or VIH)
Figure 3: Fast Read Sequence
Elite Semiconductor Memory Technology Inc.
Publication Date: May 2009
Revision: 0.2 11/34