欢迎访问ic37.com |
会员登录 免费注册
发布采购

CY7C421-40JC 参数 Datasheet PDF下载

CY7C421-40JC图片预览
型号: CY7C421-40JC
PDF下载: 下载PDF文件 查看货源
内容描述: 五百一十二分之二百五十六/ 1K / 2K / 4K ×9异步FIFO [256/512/1K/2K/4K x 9 Asynchronous FIFO]
分类和应用: 存储内存集成电路先进先出芯片时钟
文件页数/大小: 22 页 / 512 K
品牌: CYPRESS [ CYPRESS ]
 浏览型号CY7C421-40JC的Datasheet PDF文件第8页浏览型号CY7C421-40JC的Datasheet PDF文件第9页浏览型号CY7C421-40JC的Datasheet PDF文件第10页浏览型号CY7C421-40JC的Datasheet PDF文件第11页浏览型号CY7C421-40JC的Datasheet PDF文件第13页浏览型号CY7C421-40JC的Datasheet PDF文件第14页浏览型号CY7C421-40JC的Datasheet PDF文件第15页浏览型号CY7C421-40JC的Datasheet PDF文件第16页  
CY7C419/21/25/29/33  
Writing Data to the FIFO  
be expanded in width to provide word widths greater than nine  
in increments of nine. During width expansion mode, all control  
line inputs are common to all devices, and flag outputs from  
any device can be monitored.  
The availability of at least one empty location is indicated by a  
HIGH FF. The falling edge of W initiates a write cycle. Data  
appearing at the inputs (D0D8) tSD before and tHD after the  
rising edge of W will be stored sequentially in the FIFO.  
Depth Expansion Mode (see Figure 1)  
The EF LOW-to-HIGH transition occurs tWEF after the first  
LOW-to-HIGH transition of W for an empty FIFO. HF goes  
LOW tWHF after the falling edge of W following the FIFO actu-  
ally being Half Full. Therefore, the HF is active once the FIFO  
is filled to half its capacity plus one word. HF will remain LOW  
while less than one half of total memory is available for writing.  
The LOW-to-HIGH transition of HF occurs tRHF after the rising  
edge of R when the FIFO goes from half full +1 to half full. HF  
is available in standalone and width expansion modes. FF  
goes LOW tWFF after the falling edge of W, during the cycle in  
which the last available location is filled. Internal logic prevents  
overrunning a full FIFO. Writes to a full FIFO are ignored and  
the write pointer is not incremented. FF goes HIGH tRFF after  
a read from a full FIFO.  
Depth expansion mode is entered when, during a MR cycle,  
Expansion Out (XO) of one device is connected to Expansion  
In (XI) of the next device, with XO of the last device connected  
to XI of the first device. In the depth expansion mode the First  
Load (FL) input, when grounded, indicates that this part is the  
first to be loaded. All other devices must have this pin HIGH.  
To enable the correct FIFO, XO is pulsed LOW when the last  
physical location of the previous FIFO is written to and pulsed  
LOW again when the last physical location is read. Only one  
FIFO is enabled for read and one for write at any given time.  
All other devices are in standby.  
FIFOs can also be expanded simultaneously in depth and  
width. Consequently, any depth or width FIFO can be created  
of word widths in increments of 9. When expanding in depth,  
a composite FF must be created by ORing the FFs together.  
Likewise, a composite EF is created by ORing the EFs togeth-  
er. HF and RT functions are not available in depth expansion  
mode.  
Reading Data from the FIFO  
The falling edge of R initiates a read cycle if the EF is not LOW.  
Data outputs (Q0Q8) are in a high-impedance condition be-  
tween read operations (R HIGH), when the FIFO is empty, or  
when the FIFO is not the active device in the depth expansion  
mode.  
Use of the Empty and Full Flags  
In order to achieve the maximum frequency, the flags must be  
valid at the beginning of the next cycle. However, because  
they can be updated by either edge of the read of write signal,  
they must be valid by one-half of a cycle. Cypress FIFOs meet  
this requirement; some competitorsFIFOs do not.  
When one word is in the FIFO, the falling edge of R initiates a  
HIGH-to-LOW transition of EF. The rising edge of R causes the  
data outputs to go to the high-impedance state and remain  
such until a write is performed. Reads to an empty FIFO are  
ignored and do not increment the read pointer. From the empty  
condition, the FIFO can be read tWEF after a valid write.  
The reason why the flags are required to be valid by the next  
cycle is fairly complex. It has to do with the effective pulse  
width violationphenomenon, which can occur at the full and  
empty boundary conditions, if the flags are not properly used.  
The empty flag must be used to prevent reading from an empty  
FIFO and the full flag must be used to prevent writing into a full  
FIFO.  
The retransmit feature is beneficial when transferring packets  
of data. It enables the receipt of data to be acknowledged by  
the receiver and retransmitted if necessary.  
The Retransmit (RT) input is active in the standalone and width  
expansion modes. The retransmit feature is intended for use  
when a number of writes equal to or less than the depth of the  
FIFO have occurred since the last MR cycle. A LOW pulse on  
RT resets the internal read pointer to the first physical location  
of the FIFO. R and W must both be HIGH while and tRTR after  
retransmit is LOW. With every read cycle after retransmit, pre-  
viously accessed data as well as not previously accessed data  
is read and the read pointer is incremented until it is equal to  
the write pointer. Full, Half Full, and Empty flags are governed  
by the relative locations of the read and write pointers and are  
updated during a retransmit cycle. Data written to the FIFO  
after activation of RT are transmitted also.  
For example, consider an empty FIFO that is receiving read  
pulses. Because the FIFO is empty, the read pulses are ig-  
nored by the FIFO, and nothing happens. Next, a single word  
is written into the FIFO, with a signal that is asynchronous to  
the read signal. The (internal) state machine in the FIFO goes  
from empty to empty+1. However, it does this asynchronously  
with respect to the read signal, so that it cannot be determined  
what the effective pulse width of the read signal is, because  
the state machine does not look at the read signal until it goes  
to the empty+1 state. In a similar manner, the minimum write  
pulse width may be violated by attempting to write into a full  
FIFO, and asynchronously performing a read. The empty and  
full flags are used to avoid these effective pulse width viola-  
tions, but in order to do this and operate at the maximum fre-  
quency, the flag must be valid at the beginning of the next  
cycle.  
Up to the full depth of the FIFO can be repeatedly retransmit-  
ted.  
Standalone/Width Expansion Modes  
Standalone and width expansion modes are set by grounding  
Expansion In (XI) and tying First Load (FL) to VCC. FIFOs can  
Document #: 38-06001 Rev. *A  
Page 12 of 22