欢迎访问ic37.com |
会员登录 免费注册
发布采购

AM75PDL193CHH70N 参数 Datasheet PDF下载

AM75PDL193CHH70N图片预览
型号: AM75PDL193CHH70N
PDF下载: 下载PDF文件 查看货源
内容描述: [Memory IC,]
分类和应用:
文件页数/大小: 136 页 / 2454 K
品牌: CYPRESS [ CYPRESS SEMICONDUCTOR ]
 浏览型号AM75PDL193CHH70N的Datasheet PDF文件第4页浏览型号AM75PDL193CHH70N的Datasheet PDF文件第5页浏览型号AM75PDL193CHH70N的Datasheet PDF文件第6页浏览型号AM75PDL193CHH70N的Datasheet PDF文件第7页浏览型号AM75PDL193CHH70N的Datasheet PDF文件第9页浏览型号AM75PDL193CHH70N的Datasheet PDF文件第10页浏览型号AM75PDL193CHH70N的Datasheet PDF文件第11页浏览型号AM75PDL193CHH70N的Datasheet PDF文件第12页  
A D V A N C E
I N F O R M A T I O N
GENERAL DESCRIPTION (DL640)
The Am29DL640H is a 64 megabit, 3.0 volt-only flash
memory device, organized as 4,194,304 words of 16
bits each or 8,388,608 bytes of 8 bits each. Word
mode data appears on DQ15–DQ0; byte mode data
appears on DQ7–DQ0. The device is designed to be
programmed in-system with the standard 3.0 volt V
CC
supply, and can also be programmed in standard
EPROM programmers.
The device is available with an access time of 70, 90,
or 120 ns and is offered in 48-pin TSOP, 63-ball
Fine-Pitch BGA, and 64-ball Fortified BGA packages.
Standard control pins—chip enable (CE#), write en-
able (WE#), and output enable (OE#)—control normal
read and write operations, and avoid bus contention
issues.
The device requires only a
single 3.0 volt power sup-
ply
for both read and write functions. Internally gener-
ated and regulated voltages are provided for the
program and erase operations.
Factory locked parts provide several options. The
SecSi Sector may store a secure, random 16 byte
ESN (Electronic Serial Number), customer code (pro-
grammed through AMD’s ExpressFlash service), or
both. Customer Lockable parts may utilize the SecSi
Sector as bonus space, reading and writing like any
other flash sector, or may permanently lock their own
code there.
DMS (Data Management Software)
allows systems
to easily take advantage of the advanced architecture
of the simultaneous read/write product line by allowing
removal of EEPROM devices. DMS will also allow the
system software to be simplified, as it will perform all
functions necessary to modify data in file structures,
as opposed to single-byte modifications. To write or
update a particular piece of data (a phone number or
configuration data, for example), the user only needs
to state which piece of data is to be updated, and
where the updated data is located in the system. This
i s a n a d va n t a g e c o m p a r e d t o s ys te m s w h e r e
user-written software must keep track of the old data
location, status, logical to physical translation of the
data onto the Flash memory device (or memory de-
vices), and more. Using DMS, user-written software
does not need to interface with the Flash memory di-
rectly. Instead, the user's software accesses the Flash
memory by calling one of only six functions. AMD pro-
vides this software to simplify system design and soft-
ware integration efforts.
The device offers complete compatibility with the
JEDEC single-power-supply Flash command set
standard.
Commands are written to the command
register using standard microprocessor write timings.
Reading data out of the device is similar to reading
from other Flash or EPROM devices.
The host system can detect whether a program or
erase operation is complete by using the device
sta-
tus bits:
RY/BY# pin, DQ7 (Data# Polling) and
DQ6/DQ2 (toggle bits). After a program or erase cycle
has been completed, the device automatically returns
to the read mode.
The
sector erase architecture
allows memory sec-
tors to be erased and reprogrammed without affecting
the data contents of other sectors. The device is fully
erased when shipped from the factory.
Hardware data protection
measures include a low
V
CC
detector that automatically inhibits write opera-
tions during power transitions. The
hardware sector
protection
feature disables both program and erase
operations in any combination of the sectors of mem-
ory. This can be achieved in-system or via program-
ming equipment.
The device offers two power-saving features. When
addresses have been stable for a specified amount of
time, the device enters the
automatic sleep mode.
The system can also place the device into the
standby mode.
Power consumption is greatly re-
duced in both modes.
Simultaneous Read/Write Operations with
Zero Latency
The Simultaneous Read/Write architecture provides
simultaneous operation
by dividing the memory
space into
four banks,
two 8 Mb banks with small and
large sectors, and two 24 Mb banks of large sectors.
Sector addresses are fixed, system software can be
used to form user-defined bank groups.
During an Erase/Program operation, any of the three
non-busy banks may be read from. Note that only two
banks can operate simultaneously. The device can im-
prove overall system performance by allowing a host
system to program or erase in one bank, then
immediately and simultaneously read from the other
bank, with zero latency. This releases the system from
waiting for the completion of program or erase
operations.
The Am29DL640H can be organized as both a top and
bottom boot sector configuration.
Bank
Bank 1
Bank 2
Bank 3
Bank 4
Megabits
8 Mb
24 Mb
24 Mb
8 Mb
Sector Sizes
Eight 8 Kbyte/4 Kword,
Fifteen 64 Kbyte/32 Kword
Forty-eight 64 Kbyte/32 Kword
Forty-eight 64 Kbyte/32 Kword
Eight 8 Kbyte/4 Kword,
Fifteen 64 Kbyte/32 Kword
Am29DL640H Features
The
SecSi™ (Secured Silicon) Sector
is an extra
256 byte sector capable of being permanently locked
by AMD or customers. The
SecSi Customer Indica-
tor Bit
(DQ6) is permanently set to a 1 if the part has
been customer locked, permanently set to 0 if the part
has been
factory locked,
and is 0 if
customer lock-
able.
This way, customer lockable parts can never be
used to replace a factory locked part.
6
Am75PDL191CHH/Am75PDL193CHH
February 5, 2004