欢迎访问ic37.com |
会员登录 免费注册
发布采购

CLC4600ISO14X 参数 Datasheet PDF下载

CLC4600ISO14X图片预览
型号: CLC4600ISO14X
PDF下载: 下载PDF文件 查看货源
内容描述: 双,三和四通道300MHz的放大器 [Dual, Triple, and Quad 300MHz Amplifiers]
分类和应用: 商用集成电路放大器
文件页数/大小: 15 页 / 2092 K
品牌: CADEKA [ CADEKA MICROCIRCUITS LLC. ]
 浏览型号CLC4600ISO14X的Datasheet PDF文件第6页浏览型号CLC4600ISO14X的Datasheet PDF文件第7页浏览型号CLC4600ISO14X的Datasheet PDF文件第8页浏览型号CLC4600ISO14X的Datasheet PDF文件第9页浏览型号CLC4600ISO14X的Datasheet PDF文件第11页浏览型号CLC4600ISO14X的Datasheet PDF文件第12页浏览型号CLC4600ISO14X的Datasheet PDF文件第13页浏览型号CLC4600ISO14X的Datasheet PDF文件第14页  
Data Sheet  
CFB amplifiers can be used in unity gain configurations.  
Do not use the traditional voltage follower circuit, where  
the output is tied directly to the inverting input. With a  
CFB amplifier, a feedback resistor of appropriate value  
must be used to prevent unstable behavior. Refer to fig-  
ure 5 and Table 1. Although this seems cumbersome, it  
does allow a degree of freedom to adjust the passband  
characteristics.  
Application Information  
Basic Operation  
Figures 3, 4, and 5 illustrate typical circuit configurations for  
non-inverting, inverting, and unity gain topologies for dual  
supply applications. They show the recommended bypass  
capacitor values and overall closed loop gain equations.  
+Vs  
6.8μF  
Feedback Resistor Selection  
One of the key design considerations when using a CFB  
amplifier is the selection of the feedback resistor, R . R is  
f
f
0.1μF  
Input  
+
-
used in conjunction with R to set the gain in the tradi-  
g
Output  
tional non-inverting and inverting circuit configurations.  
Refer to figures 3 and 4. As discussed in the Current Feed-  
back Technology section, the value of the feedback resis-  
tor has a pronounced effect on the frequency response of  
the circuit.  
RL  
0.1μF  
6.8μF  
Rf  
Rg  
G = 1 + (Rf/Rg)  
-Vs  
Table 1, provides recommended R and associated R val-  
f
g
ues for various gain settings. These values produce the  
optimum frequency response, maximum bandwidth with  
minimum peaking. Adjust these values to optimize perfor-  
mance for a specific application. The typical performance  
characteristics section includes plots that illustrate how  
Figure 3. Typical Non-Inverting Gain Circuit  
+Vs  
6.8μF  
the bandwidth is directly affected by the value of R at  
various gain settings.  
f
R1  
0.1μF  
+
Output  
Rg  
Input  
-
RL  
±0.1dB BW  
(MHz)  
-3dB BW  
(MHz)  
0.1μF  
Gain  
(V/V  
Rf  
R (Ω)  
f
R (Ω)  
g
6.8μF  
G = - (Rf/Rg)  
-Vs  
1
2
5
1240  
510  
-
129  
140  
18  
300  
230  
111  
For optimum input offset  
voltage set R1 = Rf || Rg  
510  
50  
200  
Figure 4. Typical Inverting Gain Circuit  
Table 1: Recommended R vs. Gain  
f
+Vs  
In general, lowering the value of R from the recom-  
6.8μF  
f
mended value will extend the bandwidth at the expense  
of additional high frequency gain peaking. This will cause  
increased overshoot and ringing in the pulse response  
0.1μF  
Input  
+
Output  
characteristics. Reducing R too much will eventually  
f
-
RL  
cause oscillatory behavior.  
0.1μF  
Rf  
Increasing the value of Rf will lower the bandwidth. Low-  
ering the bandwidth creates a flatter frequency response  
and improves 0.1dB bandwidth performance. This is im-  
portant in applications such as video. Further increase in  
Rf will cause premature gain rolloff and adversely affect  
gain flatness.  
6.8μF  
G = 1  
-Vs  
Rf is required for CFB amplifiers  
Figure 5. Typical Unity Gain (G=1) Circuit  
©2004-2008 CADEKA Microcircuits LLC  
www.cadeka.com  
10  
 复制成功!