欢迎访问ic37.com |
会员登录 免费注册
发布采购

ATMEGA128L-8AU 参数 Datasheet PDF下载

ATMEGA128L-8AU图片预览
型号: ATMEGA128L-8AU
PDF下载: 下载PDF文件 查看货源
内容描述: 8位微控制器,带有128K字节的系统内可编程闪存 [8-bit Microcontroller with 128K Bytes In-System Programmable Flash]
分类和应用: 闪存微控制器外围集成电路装置时钟
文件页数/大小: 386 页 / 6530 K
品牌: ATMEL [ ATMEL CORPORATION ]
 浏览型号ATMEGA128L-8AU的Datasheet PDF文件第2页浏览型号ATMEGA128L-8AU的Datasheet PDF文件第3页浏览型号ATMEGA128L-8AU的Datasheet PDF文件第4页浏览型号ATMEGA128L-8AU的Datasheet PDF文件第5页浏览型号ATMEGA128L-8AU的Datasheet PDF文件第7页浏览型号ATMEGA128L-8AU的Datasheet PDF文件第8页浏览型号ATMEGA128L-8AU的Datasheet PDF文件第9页浏览型号ATMEGA128L-8AU的Datasheet PDF文件第10页  
resistors are activated. The Port C pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port C also serves the functions of special features of the ATmega128 as listed on
In
ATmega103 compatibility mode, Port C is output only, and the port C pins are
not
tri-stated
when a reset condition becomes active.
Note:
The ATmega128 is by default shipped in ATmega103 compatibility mode. Thus, if the parts are not
programmed before they are put on the PCB, PORTC will be output during first power up, and until
the ATmega103 compatibility mode is disabled.
Port D (PD7..PD0)
Port D is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port D output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port D pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port D pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port D also serves the functions of various special features of the ATmega128 as listed on
Port E (PE7..PE0)
Port E is an 8-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port E output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port E pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port E pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port E also serves the functions of various special features of the ATmega128 as listed on
Port F (PF7..PF0)
Port F serves as the analog inputs to the A/D Converter.
Port F also serves as an 8-bit bi-directional I/O port, if the A/D Converter is not used. Port pins
can provide internal pull-up resistors (selected for each bit). The Port F output buffers have sym-
metrical drive characteristics with both high sink and source capability. As inputs, Port F pins
that are externally pulled low will source current if the pull-up resistors are activated. The Port F
pins are tri-stated when a reset condition becomes active, even if the clock is not running. If the
JTAG interface is enabled, the pull-up resistors on pins PF7(TDI), PF5(TMS), and PF4(TCK) will
be activated even if a Reset occurs.
The TDO pin is tri-stated unless TAP states that shift out data are entered.
Port F also serves the functions of the JTAG interface.
In ATmega103 compatibility mode, Port F is an input Port only.
Port G (PG4..PG0)
Port G is a 5-bit bi-directional I/O port with internal pull-up resistors (selected for each bit). The
Port G output buffers have symmetrical drive characteristics with both high sink and source
capability. As inputs, Port G pins that are externally pulled low will source current if the pull-up
resistors are activated. The Port G pins are tri-stated when a reset condition becomes active,
even if the clock is not running.
Port G also serves the functions of various special features.
The port G pins are tri-stated when a reset condition becomes active, even if the clock is not
running.
In ATmega103 compatibility mode, these pins only serves as strobes signals to the external
memory as well as input to the 32 kHz Oscillator, and the pins are initialized to PG0 = 1, PG1 =
1, and PG2 = 0 asynchronously when a reset condition becomes active, even if the clock is not
running. PG3 and PG4 are oscillator pins.
6
ATmega128
2467R–AVR–06/08