欢迎访问ic37.com |
会员登录 免费注册
发布采购

ATMEGA48V-10MMHR 参数 Datasheet PDF下载

ATMEGA48V-10MMHR图片预览
型号: ATMEGA48V-10MMHR
PDF下载: 下载PDF文件 查看货源
内容描述: [RISC Microcontroller, 8-Bit, FLASH, AVR RISC CPU, 10MHz, CMOS, PQCC28, 4 X 4 MM, 1 MM HEIGHT, 0.45 MM PITCH, GREEN, PLASTIC, VQFN-28]
分类和应用: 闪存微控制器
文件页数/大小: 376 页 / 4764 K
品牌: ATMEL [ ATMEL ]
 浏览型号ATMEGA48V-10MMHR的Datasheet PDF文件第34页浏览型号ATMEGA48V-10MMHR的Datasheet PDF文件第35页浏览型号ATMEGA48V-10MMHR的Datasheet PDF文件第36页浏览型号ATMEGA48V-10MMHR的Datasheet PDF文件第37页浏览型号ATMEGA48V-10MMHR的Datasheet PDF文件第39页浏览型号ATMEGA48V-10MMHR的Datasheet PDF文件第40页浏览型号ATMEGA48V-10MMHR的Datasheet PDF文件第41页浏览型号ATMEGA48V-10MMHR的Datasheet PDF文件第42页  
8.12 Register Description  
8.12.1  
OSCCAL – Oscillator Calibration Register  
Bit  
7
6
5
4
3
2
1
0
(0x66)  
CAL7  
R/W  
CAL6  
R/W  
CAL5  
R/W  
CAL4  
R/W  
CAL3  
R/W  
CAL2  
R/W  
CAL1  
R/W  
CAL0  
R/W  
OSCCAL  
Read/Write  
Initial Value  
Device Specific Calibration Value  
• Bits 7..0 – CAL7..0: Oscillator Calibration Value  
The Oscillator Calibration Register is used to trim the Calibrated Internal RC Oscillator to  
remove process variations from the oscillator frequency. A pre-programmed calibration value is  
automatically written to this register during chip reset, giving the Factory calibrated frequency as  
specified in Table 28-1 on page 307. The application software can write this register to change  
the oscillator frequency. The oscillator can be calibrated to frequencies as specified in Table 28-  
1 on page 307. Calibration outside that range is not guaranteed.  
Note that this oscillator is used to time EEPROM and Flash write accesses, and these write  
times will be affected accordingly. If the EEPROM or Flash are written, do not calibrate to more  
than 8.8 MHz. Otherwise, the EEPROM or Flash write may fail.  
The CAL7 bit determines the range of operation for the oscillator. Setting this bit to 0 gives the  
lowest frequency range, setting this bit to 1 gives the highest frequency range. The two fre-  
quency ranges are overlapping, in other words a setting of OSCCAL = 0x7F gives a higher  
frequency than OSCCAL = 0x80.  
The CAL6..0 bits are used to tune the frequency within the selected range. A setting of 0x00  
gives the lowest frequency in that range, and a setting of 0x7F gives the highest frequency in the  
range.  
8.12.2  
CLKPR – Clock Prescale Register  
Bit  
7
6
5
4
3
2
1
0
CLKPCE  
R/W  
0
CLKPS3  
R/W  
CLKPS2  
R/W  
CLKPS1  
R/W  
CLKPS0  
R/W  
CLKPR  
(0x61)  
Read/Write  
Initial Value  
R
0
R
0
R
0
See Bit Description  
• Bit 7 – CLKPCE: Clock Prescaler Change Enable  
The CLKPCE bit must be written to logic one to enable change of the CLKPS bits. The CLKPCE  
bit is only updated when the other bits in CLKPR are simultaneously written to zero. CLKPCE is  
cleared by hardware four cycles after it is written or when CLKPS bits are written. Rewriting the  
CLKPCE bit within this time-out period does neither extend the time-out period, nor clear the  
CLKPCE bit.  
• Bits 3..0 – CLKPS3..0: Clock Prescaler Select Bits 3 - 0  
These bits define the division factor between the selected clock source and the internal system  
clock. These bits can be written run-time to vary the clock frequency to suit the application  
requirements. As the divider divides the master clock input to the MCU, the speed of all synchro-  
nous peripherals is reduced when a division factor is used. The division factors are given in  
Table 8-14.  
38  
ATmega48/88/168  
2545M–AVR–09/07  
 复制成功!