欢迎访问ic37.com |
会员登录 免费注册
发布采购

ATMEGA8L-8MUR 参数 Datasheet PDF下载

ATMEGA8L-8MUR图片预览
型号: ATMEGA8L-8MUR
PDF下载: 下载PDF文件 查看货源
内容描述: 8位爱特梅尔带有8K字节的系统内可编程闪存 [8-bit Atmel with 8KBytes In-System PRogrammable Flash]
分类和应用: 闪存微控制器和处理器外围集成电路异步传输模式PCATM时钟
文件页数/大小: 331 页 / 6705 K
品牌: ATMEL [ ATMEL ]
 浏览型号ATMEGA8L-8MUR的Datasheet PDF文件第164页浏览型号ATMEGA8L-8MUR的Datasheet PDF文件第165页浏览型号ATMEGA8L-8MUR的Datasheet PDF文件第166页浏览型号ATMEGA8L-8MUR的Datasheet PDF文件第167页浏览型号ATMEGA8L-8MUR的Datasheet PDF文件第169页浏览型号ATMEGA8L-8MUR的Datasheet PDF文件第170页浏览型号ATMEGA8L-8MUR的Datasheet PDF文件第171页浏览型号ATMEGA8L-8MUR的Datasheet PDF文件第172页  
ATmega8(L)  
• Bits 7..1 – TWA: TWI (Slave) Address Register  
These seven bits constitute the slave address of the TWI unit.  
• Bit 0 – TWGCE: TWI General Call Recognition Enable Bit  
If set, this bit enables the recognition of a General Call given over the Two-wire Serial Bus.  
Using the TWI  
The AVR TWI is byte-oriented and interrupt based. Interrupts are issued after all bus events, like  
reception of a byte or transmission of a START condition. Because the TWI is interrupt-based,  
the application software is free to carry on other operations during a TWI byte transfer. Note that  
the TWI Interrupt Enable (TWIE) bit in TWCR together with the Global Interrupt Enable bit in  
SREG allow the application to decide whether or not assertion of the TWINT Flag should gener-  
ate an interrupt request. If the TWIE bit is cleared, the application must poll the TWINT Flag in  
order to detect actions on the TWI bus.  
When the TWINT Flag is asserted, the TWI has finished an operation and awaits application  
response. In this case, the TWI Status Register (TWSR) contains a value indicating the current  
state of the TWI bus. The application software can then decide how the TWI should behave in  
the next TWI bus cycle by manipulating the TWCR and TWDR Registers.  
Figure 77 is a simple example of how the application can interface to the TWI hardware. In this  
example, a Master wishes to transmit a single data byte to a Slave. This description is quite  
abstract, a more detailed explanation follows later in this section. A simple code example imple-  
menting the desired behavior is also presented.  
Figure 77. Interfacing the Application to the TWI in a Typical Transmission  
3. Check TWSR to see if START was  
sent. Application loads SLA+W into  
TWDR, and loads appropriate control  
signals into TWCR, makin sure that  
TWINT is written to one,  
5. Check TWSR to see if SLA+W was  
sent and ACK received.  
Application loads data into TWDR, and  
loads appropriate control signals into  
TWCR, making sure that TWINT is  
written to one  
1. Application  
writes to TWCR to  
initiate  
transmission of  
START  
7. Check TWSR to see if data was sent  
and ACK received.  
Application loads appropriate control  
signals to send STOP into TWCR,  
making sure that TWINT is written to one  
and TWSTA is written to zero.  
TWI bus START  
SLA+W  
A
Data  
A
STOP  
Indicates  
TWINT set  
4. TWINT set.  
Status code indicates  
SLA+W sent, ACK  
received  
2. TWINT set.  
Status code indicates  
START condition sent  
6. TWINT set.  
Status code indicates  
data sent, ACK received  
1. The first step in a TWI transmission is to transmit a START condition. This is done by  
writing a specific value into TWCR, instructing the TWI hardware to transmit a START  
condition. Which value to write is described later on. However, it is important that the  
TWINT bit is set in the value written. Writing a one to TWINT clears the flag. The TWI will  
not start any operation as long as the TWINT bit in TWCR is set. Immediately after the  
application has cleared TWINT, the TWI will initiate transmission of the START condition  
2. When the START condition has been transmitted, the TWINT Flag in TWCR is set, and  
TWSR is updated with a status code indicating that the START condition has success-  
fully been sent  
168  
2486AA–AVR–02/2013  
 复制成功!