欢迎访问ic37.com |
会员登录 免费注册
发布采购

ATMEGA32L-8AUR 参数 Datasheet PDF下载

ATMEGA32L-8AUR图片预览
型号: ATMEGA32L-8AUR
PDF下载: 下载PDF文件 查看货源
内容描述: [RISC Microcontroller, 8-Bit, FLASH, AVR RISC CPU, 8MHz, CMOS, PQFP44, 10 X 10 MM, 1 MM HEIGHT, 0.80 MM PITCH, GREEN, PLASTIC, MS-026ACB, TQFP-44]
分类和应用: 闪存微控制器
文件页数/大小: 347 页 / 3171 K
品牌: ATMEL [ ATMEL ]
 浏览型号ATMEGA32L-8AUR的Datasheet PDF文件第97页浏览型号ATMEGA32L-8AUR的Datasheet PDF文件第98页浏览型号ATMEGA32L-8AUR的Datasheet PDF文件第99页浏览型号ATMEGA32L-8AUR的Datasheet PDF文件第100页浏览型号ATMEGA32L-8AUR的Datasheet PDF文件第102页浏览型号ATMEGA32L-8AUR的Datasheet PDF文件第103页浏览型号ATMEGA32L-8AUR的Datasheet PDF文件第104页浏览型号ATMEGA32L-8AUR的Datasheet PDF文件第105页  
ATmega32(L)  
seting (or clearing) the OC1x Register at the compare match between OCR1x and  
TCNT1, and clearing (or setting) the OC1x Register at the timer clock cycle the counter  
is cleared (changes from TOP to BOTTOM).  
The PWM frequency for the output can be calculated by the following equation:  
f
clk_I/O  
f
= ----------------------------------  
OCnxPWM  
N ⋅ (1 + TOP)  
The N variable represents the prescaler divider (1, 8, 64, 256, or 1024).  
The extreme values for the OCR1x Register represents special cases when generating  
a PWM waveform output in the fast PWM mode. If the OCR1x is set equal to BOTTOM  
(0x0000) the output will be a narrow spike for each TOP+1 timer clock cycle. Setting the  
OCR1x equal to TOP will result in a constant high or low output (depending on the polar-  
ity of the output set by the COM1x1:0 bits.)  
A frequency (with 50ꢀ duty cycle) waveform output in fast PWM mode can be achieved  
by setting OC1A to toggle its logical level on each compare match (COM1A1:0 = 1).  
This applies only if OCR1A is used to define the TOP value (WGM13:0 = 15). The wave-  
form generated will have a maximum frequency of fOC A = fclk_I/O/2 when OCR1A is set to  
1
zero (0x0000). This feature is similar to the OC1A toggle in CTC mode, except the dou-  
ble buffer feature of the output compare unit is enabled in the fast PWM mode.  
Phase Correct PWM Mode  
The phase correct Pulse Width Modulation or phase correct PWM mode (WGM13:0 =  
1,2,3,10, or 11) provides a high resolution phase correct PWM waveform generation  
option. The phase correct PWM mode is, like the phase and frequency correct PWM  
mode, based on a dual-slope operation. The counter counts repeatedly from BOTTOM  
(0x0000) to TOP and then from TOP to BOTTOM. In non-inverting Compare Output  
mode, the Output Compare (OC1x) is cleared on the compare match between TCNT1  
and OCR1x while upcounting, and set on the compare match while downcounting. In  
inverting Output Compare mode, the operation is inverted. The dual-slope operation has  
lower maximum operation frequency than single slope operation. However, due to the  
symmetric feature of the dual-slope PWM modes, these modes are preferred for motor  
control applications.  
The PWM resolution for the phase correct PWM mode can be fixed to 8-, 9-, or 10-bit, or  
defined by either ICR1 or OCR1A. The minimum resolution allowed is 2-bit (ICR1 or  
OCR1A set to 0x0003), and the maximum resolution is 16-bit (ICR1 or OCR1A set to  
MAX). The PWM resolution in bits can be calculated by using the following equation:  
log(TOP + 1)  
R
= ----------------------------------  
PCPWM  
log(2)  
In phase correct PWM mode the counter is incremented until the counter value matches  
either one of the fixed values 0x00FF, 0x01FF, or 0x03FF (WGM13:0 = 1, 2, or 3), the  
value in ICR1 (WGM13:0 = 10), or the value in OCR1A (WGM13:0 = 11). The counter  
has then reached the TOP and changes the count direction. The TCNT1 value will be  
equal to TOP for one timer clock cycle. The timing diagram for the phase correct PWM  
mode is shown on Figure 47. The figure shows phase correct PWM mode when OCR1A  
or ICR1 is used to define TOP. The TCNT1 value is in the timing diagram shown as a  
histogram for illustrating the dual-slope operation. The diagram includes non-inverted  
and inverted PWM outputs. The small horizontal line marks on the TCNT1 slopes repre-  
sent compare matches between OCR1x and TCNT1. The OC1x Interrupt Flag will be  
set when a compare match occurs.  
101  
2503J–AVR–10/06  
 复制成功!