欢迎访问ic37.com |
会员登录 免费注册
发布采购

AAT3221IJS-3.5-T1 参数 Datasheet PDF下载

AAT3221IJS-3.5-T1图片预览
型号: AAT3221IJS-3.5-T1
PDF下载: 下载PDF文件 查看货源
内容描述: 150毫安纳安级™ LDO线性稳压器 [150mA NanoPower™ LDO Linear Regulator]
分类和应用: 稳压器调节器光电二极管输出元件
文件页数/大小: 16 页 / 222 K
品牌: ANALOGICTECH [ ADVANCED ANALOGIC TECHNOLOGIES ]
 浏览型号AAT3221IJS-3.5-T1的Datasheet PDF文件第8页浏览型号AAT3221IJS-3.5-T1的Datasheet PDF文件第9页浏览型号AAT3221IJS-3.5-T1的Datasheet PDF文件第10页浏览型号AAT3221IJS-3.5-T1的Datasheet PDF文件第11页浏览型号AAT3221IJS-3.5-T1的Datasheet PDF文件第13页浏览型号AAT3221IJS-3.5-T1的Datasheet PDF文件第14页浏览型号AAT3221IJS-3.5-T1的Datasheet PDF文件第15页浏览型号AAT3221IJS-3.5-T1的Datasheet PDF文件第16页  
PRODUCT DATASHEET  
AAT3221/2  
PowerLinearTM  
150mA NanoPower™ LDO Linear Regulator  
For a 150mA output current and a 2.5 volt drop across  
the AAT3221/2 at an ambient temperature of 85°C, the  
maximum on-time duty cycle for the device would be  
71.2%.  
High Peak Output Current Applications  
Some applications require the LDO regulator to operate  
at continuous nominal levels with short duration, high-  
current peaks. The duty cycles for both output current  
levels must be taken into account. To do so, one would  
first need to calculate the power dissipation at the nom-  
inal continuous level, then factor in the addition power  
dissipation due to the short duration, high-current  
peaks.  
The following family of curves shows the safe operating  
area for duty-cycled operation from ambient room tem-  
perature to the maximum operating level.  
Device Duty Cycle vs. VDROP  
(VOUT = 2.5V @ 25°C)  
For example, a 2.5V system using an AAT3221/  
2IGV-2.5-T1 operates at a continuous 100mA load cur-  
rent level and has short 150mA current peaks. The cur-  
rent peak occurs for 378μs out of a 4.61ms period. It  
will be assumed the input voltage is 5.0V.  
3.5  
3
200mA  
2.5  
2
1.5  
1
First, the current duty cycle percentage must be  
calculated:  
0.5  
0
% Peak Duty Cycle: X/100 = 378ms/4.61ms  
% Peak Duty Cycle = 8.2%  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Duty Cycle (%)  
The LDO regulator will be under the 100mA load for  
91.8% of the 4.61ms period and have 150mA peaks  
occurring for 8.2% of the time. Next, the continuous  
nominal power dissipation for the 100mA load should be  
determined then multiplied by the duty cycle to conclude  
the actual power dissipation over time.  
Device Duty Cycle vs. VDROP  
(VOUT = 2.5V @ 50°C)  
3.5  
3
200mA  
2.5  
2
150mA  
PD(MAX) = (VIN - VOUT)IOUT + (VIN · IGND  
)
1.5  
1
PD(100mA) = (5.0V - 2.5V)100mA + (5.0V · 1.1mA)  
PD(100mA) = 250mW  
0.5  
0
PD(91.8%D/C) = %DC · PD(100mA)  
PD(91.8%D/C) = 0.918 · 250mW  
PD(91.8%D/C) = 229.5mW  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Duty Cycle (%)  
The power dissipation for a 100mA load occurring for  
91.8% of the duty cycle will be 229.5mW. Now the  
power dissipation for the remaining 8.2% of the duty  
cycle at the 150mA load can be calculated:  
Device Duty Cycle vs. VDROP  
(VOUT = 2.5V @ 85°C)  
3.5  
3
2.5  
2
100mA  
PD(MAX) = (VIN - VOUT)IOUT + (VIN · IGND  
PD(150mA) = (5.0V - 2.5V)150mA + (5.0V · 1.1mA)  
PD(150mA) = 375mW  
)
200mA  
150mA  
1.5  
1
0.5  
0
PD(8.2%D/C) = %DC · PD(150mA)  
PD(8.2%D/C) = 0.082 · 375mW  
PD(8.2%D/C) = 30.75mW  
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Duty Cycle (%)  
w w w . a n a l o g i c t e c h . c o m  
12  
3221.2007.11.1.12  
 复制成功!