欢迎访问ic37.com |
会员登录 免费注册
发布采购

AAT2113A 参数 Datasheet PDF下载

AAT2113A图片预览
型号: AAT2113A
PDF下载: 下载PDF文件 查看货源
内容描述: 3MHz的,快速瞬态1.5A降压转换器,采用2mm x 2mm封装 [3MHz, Fast Transient 1.5A Step-Down Converter in 2mm x 2mm Package]
分类和应用: 转换器
文件页数/大小: 19 页 / 2997 K
品牌: ANALOGICTECH [ ADVANCED ANALOGIC TECHNOLOGIES ]
 浏览型号AAT2113A的Datasheet PDF文件第8页浏览型号AAT2113A的Datasheet PDF文件第9页浏览型号AAT2113A的Datasheet PDF文件第10页浏览型号AAT2113A的Datasheet PDF文件第11页浏览型号AAT2113A的Datasheet PDF文件第13页浏览型号AAT2113A的Datasheet PDF文件第14页浏览型号AAT2113A的Datasheet PDF文件第15页浏览型号AAT2113A的Datasheet PDF文件第16页  
PRODUCT DATASHEET  
AAT2113A  
TM  
SwitchReg  
3MHz, FastTransient 1.5A Step-Down Converter in 2mm x 2mm Package  
The AAT2113A adjustable version, combined with an  
external feed forward capacitor (C2 in Figure 5), delivers  
enhanced transient response for extreme pulsed load  
applications. The suggested value for C2 is in the range  
of 22pF to 100pF.  
Output Capacitor  
The output capacitor limits the output ripple and pre-  
vents the output voltage droop during large load transi-  
tions. A 10F to 22F X5R or X7R ceramic capacitor  
typically provides sufficient bulk capacitance to stabilize  
the output during large load transitions and has the ESR  
and ESL characteristics necessary for low output ripple.  
R2 = 59kΩ  
R1 (kΩ)  
R2 = 200kΩ  
R1 (kΩ)  
VOUT (V)  
The output voltage droop due to a load transient is  
dominated by the capacitance of the ceramic output  
capacitor.  
1.0  
1.1  
1.2  
1.3  
1.4  
1.5  
1.6  
1.7  
1.8  
39.2  
49.9  
59  
68.1  
78.7  
88.7  
97.6  
107  
118  
133  
165  
200  
232  
267  
301  
332  
365  
400  
During a step increase in load current, the ceramic out-  
put capacitor alone supplies the load current until the  
loop responds. Within two or three switching cycles, the  
loop responds and the inductor current increases to  
match the load current demand. The relationship of the  
output voltage droop during the three switching cycles to  
the output capacitance can be estimated by:  
Table 2: Feedback Resistor Selection for  
Adjustable Output Voltage Version.  
3 · ΔILOAD  
COUT  
=
V
DROOP · FS  
Thermal Calculations  
Once the average inductor current increases to the DC  
load level, the output voltage recovers. The above equa-  
tion establishes a limit on the minimum value for the  
output capacitor with respect to load transients.  
There are three types of losses associated with the  
AAT2113A step-down converter: switching losses, con-  
duction losses, and quiescent current losses. Conduction  
losses are associated with the RDS(ON) characteristics of  
the power output switching devices. Switching losses are  
dominated by the gate charge of the power output  
switching devices. At full load, assuming continuous con-  
duction mode (CCM), a simplified form of the losses is  
given by:  
The internal voltage loop compensation also limits the  
minimum output capacitor value to 10F. This is due to  
its effect on the loop crossover frequency (bandwidth),  
phase margin, and gain margin. Increased output capac-  
itance will reduce the crossover frequency with greater  
phase margin.  
IO2 · (RDS(ON)H · VO + RDS(ON)L · [VIN - VO])  
PTOTAL  
=
Feedback Resistor Selection  
VIN  
Resistors R1 and R2 of Figure 5 program the output to  
regulate at a voltage higher than 0.6V for the AAT2113A  
adjustable version. To limit the bias current required for  
the external feedback resistor string while maintaining  
good noise immunity, the suggested value for R2 is  
200kΩ. Table 1 summarizes the resistor values for vari-  
ous output voltages with R2 set to either 59kΩ or 200kΩ.  
Alternately, the feedback resistor may be calculated  
using the following equation:  
+ (tsw · FS · IO + IQ) · VIN  
IQ is the step-down converter quiescent current. The  
term tSW is used to estimate the full load step-down con-  
verter switching losses. For the condition where the  
step-down converter is in dropout at 100% duty cycle,  
the total device dissipation reduces to:  
V
VREF  
1.8V  
0.6V  
PTOTAL= IO2 · RDS(ON)H + IQ · VIN  
R1 =  
OUT -1 · R2 =  
- 1 · 200kΩ = 400kΩ  
w w w . a n a l o g i c t e c h . c o m  
12  
2113A.2009.06.1.1