欢迎访问ic37.com |
会员登录 免费注册
发布采购

AM29F040B-120JC 参数 Datasheet PDF下载

AM29F040B-120JC图片预览
型号: AM29F040B-120JC
PDF下载: 下载PDF文件 查看货源
内容描述: 4兆位( 512K的×8位) CMOS 5.0伏只,统一部门快闪记忆体 [4 Megabit (512 K x 8-Bit) CMOS 5.0 Volt-only, Uniform Sector Flash Memory]
分类和应用: 内存集成电路
文件页数/大小: 35 页 / 762 K
品牌: AMD [ AMD ]
 浏览型号AM29F040B-120JC的Datasheet PDF文件第7页浏览型号AM29F040B-120JC的Datasheet PDF文件第8页浏览型号AM29F040B-120JC的Datasheet PDF文件第9页浏览型号AM29F040B-120JC的Datasheet PDF文件第10页浏览型号AM29F040B-120JC的Datasheet PDF文件第12页浏览型号AM29F040B-120JC的Datasheet PDF文件第13页浏览型号AM29F040B-120JC的Datasheet PDF文件第14页浏览型号AM29F040B-120JC的Datasheet PDF文件第15页  
COMMAND DEFINITIONS  
Writing specific address and data commands or se-  
quences into the command register initiates device  
operations. The Command Definitions table defines the  
valid register command sequences. Writing incorrect  
address and data values or writing them in the im-  
proper sequence resets the device to reading array  
data.  
however, the device ignores reset commands until the  
operation is complete.  
The reset command may be written between the se-  
quence cycles in an autoselect command sequence.  
Once in the autoselect mode, the reset command must  
be written to return to reading array data (also applies  
to autoselect during Erase Suspend).  
All addresses are latched on the falling edge of WE# or  
CE#, whichever happens later. All data is latched on  
the rising edge of WE# or CE#, whichever happens  
first. Refer to the appropriate timing diagrams in the  
“AC Characteristics” section.  
If DQ5 goes high during a program or erase operation,  
writing the reset command returns the device to read-  
ing array data (also applies during Erase Suspend).  
Autoselect Command Sequence  
The autoselect command sequence allows the host  
system to access the manufacturer and devices codes,  
and determine whether or not a sector is protected.  
The Command Definitions table shows the address  
and data requirements. This method is an alternative to  
that shown in the Autoselect Codes (High Voltage  
Method) table, which is intended for PROM program-  
mers and requires VID on address bit A9.  
Reading Array Data  
The device is automatically set to reading array data  
after device power-up. No commands are required to  
retrieve data. The device is also ready to read array  
data after completing an Embedded Program or Em-  
bedded Erase algorithm.  
After the device accepts an Erase Suspend command,  
the device enters the Erase Suspend mode. The sys-  
tem can read array data using the standard read  
timings, except that if it reads at an address within  
erase-suspended sectors, the device outputs status  
data. After completing a programming operation in the  
Erase Suspend mode, the system may once again  
read array data with the same exception. See “Erase  
Suspend/Erase Resume Commands” for more infor-  
mation on this mode.  
The autoselect command sequence is initiated by writ-  
ing two unlock cycles, followed by the autoselect  
command. The device then enters the autoselect  
mode, and the system may read at any address any  
number of times, without initiating another command  
sequence.  
A read cycle at address XX00h or retrieves the manu-  
facturer code. A read cycle at address XX01h returns  
the device code. A read cycle containing a sector ad-  
dress (SA) and the address 02h in returns 01h if that  
sector is protected, or 00h if it is unprotected. Refer to  
the Sector Address tables for valid sector addresses.  
The system must issue the reset command to re-en-  
able the device for reading array data if DQ5 goes high,  
or while in the autoselect mode. See the “Reset Com-  
mand” section, next.  
The system must write the reset command to exit the  
autoselect mode and return to reading array data.  
See also “Requirements for Reading Array Data” in the  
“Device Bus Operations” section for more information.  
The Read Operations table provides the read parame-  
ters, and Read Operation Timings diagram shows the  
timing diagram.  
Byte Program Command Sequence  
Programming is a four-bus-cycle operation. The pro-  
gram command sequence is initiated by writing two  
unlock write cycles, followed by the program set-up  
command. The program address and data are written  
next, which in turn initiate the Embedded Program al-  
gorithm. The system is not required to provide further  
controls or timings. The device automatically provides  
internally generated program pulses and verify the pro-  
grammed cell margin. The Command Definitions take  
shows the address and data requirements for the byte  
program command sequence.  
Reset Command  
Writing the reset command to the device resets the de-  
vice to reading array data. Address bits are don’t care  
for this command.  
The reset command may be written between the se-  
quence cycles in an erase command sequence before  
erasing begins. This resets the device to reading array  
data. Once erasure begins, however, the device ig-  
nores reset commands until the operation is complete.  
When the Embedded Program algorithm is complete,  
the device then returns to reading array data and ad-  
dresses are no longer latched. The system can  
determine the status of the program operation by using  
DQ7 or DQ6. See “Write Operation Status” for informa-  
tion on these status bits.  
The reset command may be written between the se-  
quence cycles in a program command sequence  
before programming begins. This resets the device to  
reading array data (also applies to programming in  
Erase Suspend mode). Once programming begins,  
Am29F040B  
11