欢迎访问ic37.com |
会员登录 免费注册
发布采购

HCPL-2211 参数 Datasheet PDF下载

HCPL-2211图片预览
型号: HCPL-2211
PDF下载: 下载PDF文件 查看货源
内容描述: 低输入电流逻辑门光电耦合器 [Low Input Current Logic Gate Optocouplers]
分类和应用: 光电
文件页数/大小: 12 页 / 206 K
品牌: AGILENT [ AGILENT TECHNOLOGIES, LTD. ]
 浏览型号HCPL-2211的Datasheet PDF文件第4页浏览型号HCPL-2211的Datasheet PDF文件第5页浏览型号HCPL-2211的Datasheet PDF文件第6页浏览型号HCPL-2211的Datasheet PDF文件第7页浏览型号HCPL-2211的Datasheet PDF文件第8页浏览型号HCPL-2211的Datasheet PDF文件第10页浏览型号HCPL-2211的Datasheet PDF文件第11页浏览型号HCPL-2211的Datasheet PDF文件第12页  
Notes:
1. Derate total package power dissipa-
tion, P
T
, linearly above 70°C free air
temperature at a rate of 4.5 mW/°C.
2. Duration of output short circuit time
should not exceed 10 ms.
3. Device considered a two-terminal
device: pins 1, 2, 3, and 4 shorted
together and pins 5, 6, 7, and 8
shorted together.
4. The t
PLH
propagation delay is
measured from the 50% point on the
leading edge of the input pulse to the
1.3 V point on the leading edge of the
output pulse. The t
PHL
propagation
delay is measured from the 50% point
on the trailing edge of the input pulse
to the 1.3 V point on the trailing edge
of the output pulse.
5. When the peaking capacitor is omitted,
propagation delay times may increase
by 100 ns.
6. CM
L
is the maximum rate of rise of the
common mode voltage that can be
sustained with the output voltage in the
logic low state (V
O
< 0.8 V). CM
H
is
the maximum rate of fall of the
common mode voltage that can be
I
OH
– HIGH LEVEL OUTPUT CURRENT – mA
sustained with the output voltage in the
logic high state (V
O
> 2.0 V).
7. Use of a 0.1
µF
bypass capacitor
connected between pins 5 and 8 is
recommended.
8. In accordance with UL1577, each
optocoupler is proof tested by applying
an insulation test voltage
3000 V rms
for one second (leakage detection
current limit, I
I-O
5
µA).
This test is
performed before the 100% production
test for partial discharge (Method b)
shown in the VDE 0884 Insulation
Characteristics Table, if applicable.
V
OL
– LOW LEVEL OUTPUT VOLTAGE – V
1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-60 -40 -20
0
20
40
60
80 100
V
CC
= 4.5 V
I
F
= 0 mA
V
O
= 6.4 mA
0
5
V
O
– OUTPUT VOLTAGE – V
V
CC
= 4.5 V
I
F
= 5 mA
V
O
= 2.7 V
-1
-2
-3
-4
-5
V
O
= 2.4 V
-6
-7
-8
-60 -40 -20
0
20
V
CC
= 4.5 V
T
A
= 25 °C
4
3
I
OH
= -2.6 mA
2
1
I
OL
= 6.4 mA
0
0
0.5
1.0
1.5
2.0
40
60
80 100
T
A
– TEMPERATURE – °C
T
A
– TEMPERATURE – °C
I
F
– INPUT CURRENT – mA
Figure 1. Typical Logic Low Output
Voltage vs. Temperature.
Figure 2. Typical Logic High Output
Current vs. Temperature.
V
CC
Figure 3. Output Voltage vs. Forward
Input Current.
PULSE GEN.
t
r
= t
f =
5 ns
f = 100 kHz
10 % DUTY
CYCLE
V
O
= 5 V
I
F
INPUT
MONITORING
NODE
HCPL-2200
1
2
3
OUTPUT V
O
MONITORING
NODE
5V
D
1
619
V
CC 8
7
6
C
2
=
15 pF
5 kΩ
D
2
D
3
D
4
1000
I
F
– FORWARD CURRENT – mA
R
1
T
A
= 25 °C
100
10
1.0
0.1
0.01
I
F
+
V
F
4
C
1
=
120 pF
GND
5
THE PROBE AND JIG CAPACITANCES
ARE INCLUDED IN C
1 AND
C
2.
2.15 kΩ 1.10 kΩ 681
R
I
5 mA
I
F
(ON) 1.6 mA 3 mA
ALL DIODES ARE 1N916 OR 1N3064.
INPUT I
F
1.2
1.3
1.4
1.5
0.001
1.1
I
F
(ON)
50 % I
F
(ON)
0 mA
t
PLH
t
PHL
V
F
– FORWARD VOLTAGE – V
OUTPUT
V
O
V
OH
1.3 V
V
OL
Figure 4. Typical Input Diode Forward
Characteristic.
Figure 5. Test Circuit for t
PLH
, t
PHL
, t
r
, and t
f
.
1-128