欢迎访问ic37.com |
会员登录 免费注册
发布采购

AD9200JRS 参数 Datasheet PDF下载

AD9200JRS图片预览
型号: AD9200JRS
PDF下载: 下载PDF文件 查看货源
内容描述: 完整的10位, 20 MSPS , 80毫瓦的CMOS A / D转换器 [Complete 10-Bit, 20 MSPS, 80 mW CMOS A/D Converter]
分类和应用: 转换器光电二极管
文件页数/大小: 24 页 / 341 K
品牌: AD [ ANALOG DEVICES ]
 浏览型号AD9200JRS的Datasheet PDF文件第2页浏览型号AD9200JRS的Datasheet PDF文件第3页浏览型号AD9200JRS的Datasheet PDF文件第4页浏览型号AD9200JRS的Datasheet PDF文件第5页浏览型号AD9200JRS的Datasheet PDF文件第6页浏览型号AD9200JRS的Datasheet PDF文件第7页浏览型号AD9200JRS的Datasheet PDF文件第8页浏览型号AD9200JRS的Datasheet PDF文件第9页  
a
FEATURES
CMOS 10-Bit, 20 MSPS Sampling A/D Converter
Pin-Compatible with AD876
Power Dissipation: 80 mW (3 V Supply)
Operation Between 2.7 V and 5.5 V Supply
Differential Nonlinearity: 0.5 LSB
Power-Down (Sleep) Mode
Three-State Outputs
Out-of-Range Indicator
Built-In Clamp Function (DC Restore)
Adjustable On-Chip Voltage Reference
IF Undersampling to 135 MHz
PRODUCT DESCRIPTION
Complete 10-Bit, 20 MSPS, 80 mW
CMOS A/D Converter
AD9200
A single clock input is used to control all internal conversion
cycles. The digital output data is presented in straight binary
output format. An out-of-range signal (OTR) indicates an over-
flow condition which can be used with the most significant bit
to determine low or high overflow.
The AD9200 can operate with supply range from 2.7 V to
5.5 V, ideally suiting it for low power operation in high speed
portable applications.
The AD9200 is specified over the industrial (–40°C to +85°C)
and commercial (0°C to +70°C) temperature ranges.
PRODUCT HIGHLIGHTS
Low Power
The AD9200 is a monolithic, single supply, 10-bit, 20 MSPS
analog-to-digital converter with an on-chip sample-and-hold
amplifier and voltage reference. The AD9200 uses a multistage
differential pipeline architecture at 20 MSPS data rates and
guarantees no missing codes over the full operating temperature
range.
The input of the AD9200 has been designed to ease the devel-
opment of both imaging and communications systems. The user
can select a variety of input ranges and offsets and can drive the
input either single-ended or differentially.
The sample-and-hold (SHA) amplifier is equally suited for both
multiplexed systems that switch full-scale voltage levels in suc-
cessive channels and sampling single-channel inputs at frequen-
cies up to and beyond the Nyquist rate. AC coupled input
signals can be shifted to a predetermined level, with an onboard
clamp circuit (AD9200ARS, AD9200KST). The dynamic per-
formance is excellent.
The AD9200 has an onboard programmable reference. An
external reference can also be chosen to suit the dc accuracy and
temperature drift requirements of the application.
The AD9200 consumes 80 mW on a 3 V supply (excluding the
reference power). In sleep mode, power is reduced to below
5 mW.
Very Small Package
The AD9200 is available in both a 28-lead SSOP and 48-lead
LQFP packages.
Pin Compatible with AD876
The AD9200 is pin compatible with the AD876, allowing older
designs to migrate to lower supply voltages.
300 MHz On-Board Sample-and-Hold
The versatile SHA input can be configured for either single-
ended or differential inputs.
Out-of-Range Indicator
The OTR output bit indicates when the input signal is beyond
the AD9200’s input range.
Built-In Clamp Function
Allows dc restoration of video signals with AD9200ARS and
AD9200KST.
FUNCTIONAL BLOCK DIAGRAM
CLAMP
CLAMP
IN
CLK
AVDD
DRVDD
STBY
SHA
AIN
REFTS
REFBS
REFTF
REFBF
VREF
REFSENSE
1V
OUTPUT BUFFERS
OTR
D9
(MSB)
D0
(LSB)
AVSS
DRVSS
A/D
D/A
A/D
D/A
A/D
D/A
A/D
D/A
SHA
GAIN
SHA
GAIN
SHA
GAIN
SHA
GAIN
A/D
MODE
THREE-
STATE
CORRECTION LOGIC
AD9200
REV. E
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties
which may result from its use. No license is granted by implication or
otherwise under any patent or patent rights of Analog Devices.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700
World Wide Web Site: http://www.analog.com
Fax: 781/326-8703
© Analog Devices, Inc., 1999