欢迎访问ic37.com |
会员登录 免费注册
发布采购

AD629ARZ-REEL7 参数 Datasheet PDF下载

AD629ARZ-REEL7图片预览
型号: AD629ARZ-REEL7
PDF下载: 下载PDF文件 查看货源
内容描述: [OP-AMP, 1000uV OFFSET-MAX, PDSO8, PLASTIC, MS-012AA, SOIC-8]
分类和应用: 放大器光电二极管
文件页数/大小: 16 页 / 376 K
品牌: ADI [ ADI ]
 浏览型号AD629ARZ-REEL7的Datasheet PDF文件第8页浏览型号AD629ARZ-REEL7的Datasheet PDF文件第9页浏览型号AD629ARZ-REEL7的Datasheet PDF文件第10页浏览型号AD629ARZ-REEL7的Datasheet PDF文件第11页浏览型号AD629ARZ-REEL7的Datasheet PDF文件第12页浏览型号AD629ARZ-REEL7的Datasheet PDF文件第14页浏览型号AD629ARZ-REEL7的Datasheet PDF文件第15页浏览型号AD629ARZ-REEL7的Datasheet PDF文件第16页  
AD629  
OUTPUT CURRENT AND BUFFERING  
ERROR BUDGET ANALYSIS EXAMPLE 1  
The AD629 is designed to drive loads of 2 kꢂ to within 2 ꢁ of  
the rails but can deliver higher output currents at lower output  
voltages (see Figure 1ꢀ). If higher output current is required, the  
output of the AD629 should be buffered with a precision op amp,  
such as the OP113, as shown in Figure 38. This op amp can swing  
to within 1 ꢁ of either rail while driving a load as small as 677 ꢂ.  
In the dc application that follows, the 17 A output current from  
a device with a high common-mode voltage (such as a power  
supply or current-mode amplifier) is sensed across a 1 ꢂ shunt  
resistor (see Figure 47). The common-mode voltage is 277 ,  
and the resistor terminals are connected through a long pair of  
lead wires located in a high noise environment, for example,  
±7 Hz/67 Hz, 447 ꢁ ac power lines. The calculations in Table ꢀ  
assume an induced noise level of 1 ꢁ at 67 Hz on the leads, in  
addition to a full-scale dc differential voltage of 17 . The error  
budget table quantifies the contribution of each error source.  
Note that the dominant error source in this example is due to  
the dc common-mode voltage.  
+V  
S
AD629  
REF (–)  
21.1k  
NC  
1
2
3
4
8
7
6
5
0.1µF  
380k380kΩ  
–IN  
+IN  
0.1µF  
0.1µF  
380kΩ  
V
OP113  
OUT  
20kΩ  
REF (+)  
–V  
S
OUTPUT  
CURRENT  
AD629  
REF (–)  
21.1k  
0.1µF  
–V  
S
10 AMPS  
200V DC  
TO GROUND  
NC  
NC = NO CONNECT  
1
2
3
4
8
7
6
5
CM  
380k380kΩ  
–IN  
+IN  
+V  
Figure 38. Output Buffering Application  
S
0.1µF  
1Ω  
SHUNT  
380kΩ  
A GAIN OF 19 DIFFERENTIAL AMPLIFIER  
V
OUT  
While low level signals can be connected directly to the –IN and  
+IN inputs of the AD629, differential input signals can also be  
connected, as shown in Figure 39, to give a precise gain of 19.  
However, large common-mode voltages are no longer permissible.  
Cold junction compensation can be implemented using a  
temperature sensor, such as the AD±97.  
20kΩ  
REF (+)  
–V  
S
60Hz  
0.1µF  
POWER LINE  
NC = NO CONNECT  
Figure 40. Error Budget Analysis Example 1: VIN = 10 V Full-Scale,  
VCM = 200 V DC, RSHUNT = 1 Ω, 1 V p-p, 60 Hz Power-Line Interference  
+V  
S
AD629  
REF (–)  
21.1k  
NC  
1
2
3
4
8
7
6
5
THERMOCOUPLE  
380k380kΩ  
–IN  
+IN  
+V  
0.1µF  
S
380kΩ  
V
OUT  
V
REF  
20kΩ  
REF (+)  
NC = NO CONNECT  
Figure 39. A Gain of 19 Thermocouple Amplifier  
Table 7. AD629 vs. INA117 Error Budget Analysis Example 1 (VCM = 200 V dc)  
Error, ppm of FS  
Error Source  
AD629  
INA117  
AD629  
INA117  
ACCURACY, TA = 25°C  
Initial Gain Error  
(ꢀ.ꢀꢀꢀ5 × 1ꢀ)/1ꢀ V × 1ꢀ6  
(ꢀ.ꢀꢀ1 V/1ꢀ V) × 1ꢀ6  
(224 × 1ꢀ-6 × 2ꢀꢀ V)/1ꢀ V × 1ꢀ6  
(ꢀ.ꢀꢀꢀ5 × 1ꢀ)/1ꢀ V × 1ꢀ6  
(ꢀ.ꢀꢀ2 V/1ꢀ V) × 1ꢀ6  
5ꢀꢀ  
1ꢀꢀ  
448ꢀ  
5ꢀ8ꢀ  
5ꢀꢀ  
2ꢀꢀ  
1ꢀ,ꢀꢀꢀ  
1ꢀ,7ꢀꢀ  
Offset Voltage  
DC CMR (Over Temperature)  
(5ꢀꢀ × 1ꢀ-6 × 2ꢀꢀ V)/1ꢀ V × 1ꢀ6  
Total Accuracy Error  
TEMPERATURE DRIFT (85°C)  
Gain  
1ꢀ ppm/°C × 6ꢀ°C  
(2ꢀ μV/°C × 6ꢀ°C) × 1ꢀ6/1ꢀ V  
1ꢀ ppm/°C × 6ꢀ°C  
6ꢀꢀ  
12ꢀ  
72ꢀ  
6ꢀꢀ  
24ꢀ  
84ꢀ  
Offset Voltage  
(4ꢀ μV/°C × 6ꢀ°C) × 1ꢀ6/1ꢀ V  
Total Drift Error  
RESOLUTION  
Noise, Typical, ꢀ.ꢀ1 Hz to 1ꢀ Hz, μV p-p  
CMR, 6ꢀ Hz  
Nonlinearity  
15 μV/1ꢀ V × 1ꢀ6  
(141 × 1ꢀ-6 × 1 V)/1ꢀ V × 1ꢀ6  
(1ꢀ-5 × 1ꢀ V)/1ꢀ V × 1ꢀ6  
25 μV/1ꢀ V × 1ꢀ6  
2
3
(5ꢀꢀ × 1ꢀ-6 × 1 V)/1ꢀ V × 1ꢀ6  
(1ꢀ-5 × 1ꢀ V)/1ꢀ V × 1ꢀ6  
Total Resolution Error  
Total Error  
14  
5ꢀ  
1ꢀ  
1ꢀ  
26  
63  
5826  
11,6ꢀ3  
Rev. C | Page 13 of 16