欢迎访问ic37.com |
会员登录 免费注册
发布采购

AD623ARM-REEL 参数 Datasheet PDF下载

AD623ARM-REEL图片预览
型号: AD623ARM-REEL
PDF下载: 下载PDF文件 查看货源
内容描述: 单电源,轨到轨,低成本仪表放大器 [Single Supply, Rail-to-Rail, Low Cost Instrumentation Amplifier]
分类和应用: 仪表放大器
文件页数/大小: 16 页 / 960 K
品牌: ADI [ ADI ]
 浏览型号AD623ARM-REEL的Datasheet PDF文件第8页浏览型号AD623ARM-REEL的Datasheet PDF文件第9页浏览型号AD623ARM-REEL的Datasheet PDF文件第10页浏览型号AD623ARM-REEL的Datasheet PDF文件第11页浏览型号AD623ARM-REEL的Datasheet PDF文件第13页浏览型号AD623ARM-REEL的Datasheet PDF文件第14页浏览型号AD623ARM-REEL的Datasheet PDF文件第15页浏览型号AD623ARM-REEL的Datasheet PDF文件第16页  
AD623  
+V  
+V  
S
S
+2.5V TO +6V  
+3V TO +12V  
10F  
10F  
0.1F  
0.1F  
R
R
G
G
V
R
V
R
G
OUTPUT  
REF  
OUTPUT  
REF  
V
V
OUT  
IN  
G
IN  
OUT  
R
R
G
G
REF (INPUT)  
REF (INPUT)  
10F  
0.1F  
–2.5V TO –6V  
–V  
S
a. Dual Supply  
b. Single Supply  
Figure 41. Basic Connections  
Table I. Required Values of Gain Resistors INPUT PROTECTION  
Internal supply referenced clamping diodes allow the input,  
reference, output and gain terminals of the AD623 to safely  
withstand overvoltages of 0.3 V above or below the supplies.  
This is true for all gains, and for power on and off. This last  
case is particularly important since the signal source and ampli-  
fier may be powered separately.  
Desired  
Gain  
1% Std Table  
Value of RG,  
Calculated Gain  
Using 1% Resistors  
2
5
10  
20  
33  
40  
50  
65  
100  
200  
500  
1000  
100 k  
24.9 k  
11 k  
5.23 k  
3.09 k  
2.55 k  
2.05 k  
1.58 k  
1.02 k  
499  
2
5.02  
10.09  
20.12  
33.36  
40.21  
49.78  
64.29  
99.04  
201.4  
501  
If the overvoltage is expected to exceed this value, the current  
through these diodes should be limited to about 10 mA using  
external current limiting resistors. This is shown in Figure 42.  
The size of this resistor is defined by the supply voltage and the  
required overvoltage protection.  
+V  
S
200  
100  
1 = 10mA MAX  
R
LIM  
1001  
V
OVER  
R
AD623  
R
OUTPUT  
G
INPUT AND OUTPUT OFFSET VOLTAGE  
R
LIM  
The low errors of the AD623 are attributed to two sources,  
input and output errors. The output error is divided by the  
programmed gain when referred to the input. In practice, the  
input errors dominate at high gains and the output errors domi-  
nate at low gains. The total VOS for a given gain is calculated as:  
V
V
؊V +0.7V  
OVER  
S
OVER  
=
LIM  
10mA  
؊V  
S
Figure 42. Input Protection  
RF INTERFERENCE  
Total Error RTI = Input Error + (Output Error/G)  
Total Error RTO = (Input Error × G) + Output Error  
All instrumentation amplifiers can rectify high frequency out-of-  
band signals. Once rectified, these signals appear as dc offset  
errors at the output. The circuit of Figure 43 provides good RFI  
suppression without reducing performance within the in amps  
pass band. Resistor R1 and capacitor C1 (and likewise, R2 and  
C2) form a low-pass RC filter that has a –3 dB BW equal to:  
F = 1/(2 π R1C1). Using the component values shown, this  
filter has a –3 dB bandwidth of approximately 40 kHz. Resistors  
R1 and R2 were selected to be large enough to isolate the  
circuit’s input from the capacitors, but not large enough to  
significantly increase the circuit’s noise. To preserve common-  
mode rejection in the amplifier’s pass band, capacitors C1 and  
C2 need to be 5% or better units, or low cost 20% units can be  
tested and “binned” to provide closely matched devices.  
RTI offset errors and noise voltages for different gains are shown  
below in Table II.  
Table II. RTI Error Sources  
Max  
Max  
Total Input  
Offset Error  
Total Input  
Offset Drift  
Total Input  
Referred Noise  
(nV/Hz)  
Gain V  
V  
V/؇C  
V/؇C  
AD623A AD623B AD623A AD623B AD623A & AD623B  
1
2
5
10  
20  
50  
1200  
700  
400  
300  
250  
220  
600  
350  
200  
150  
125  
110  
105  
100  
12  
7
4
11  
6
3
62  
45  
38  
35  
35  
35  
35  
35  
Capacitor C3 is needed to maintain common-mode rejection at  
the low frequencies. R1/R2 and C1/C2 form a bridge circuit  
whose output appears across the in amp’s input pins. Any  
mismatch between C1 and C2 will unbalance the bridge and  
reduce common-mode rejection. C3 ensures that any RF signals  
3
2
2.5  
2.2  
2.1  
2
1.5  
1.2  
1.1  
1
100 210  
1000 200  
–12–  
REV. C