欢迎访问ic37.com |
会员登录 免费注册
发布采购

A1010A-1PG256B 参数 Datasheet PDF下载

A1010A-1PG256B图片预览
型号: A1010A-1PG256B
PDF下载: 下载PDF文件 查看货源
内容描述: HiRel它的FPGA [HiRel FPGAs]
分类和应用:
文件页数/大小: 98 页 / 1852 K
品牌: ACTEL [ Actel Corporation ]
 浏览型号A1010A-1PG256B的Datasheet PDF文件第7页浏览型号A1010A-1PG256B的Datasheet PDF文件第8页浏览型号A1010A-1PG256B的Datasheet PDF文件第9页浏览型号A1010A-1PG256B的Datasheet PDF文件第10页浏览型号A1010A-1PG256B的Datasheet PDF文件第12页浏览型号A1010A-1PG256B的Datasheet PDF文件第13页浏览型号A1010A-1PG256B的Datasheet PDF文件第14页浏览型号A1010A-1PG256B的Datasheet PDF文件第15页  
HiRel FPGAs  
Package Thermal Characteristics  
The device junction to case thermal characteristic is θjc, and  
the junction to ambient air characteristic is θja. The thermal  
characteristics for θja are shown with two different air flow  
rates.  
Maximum junction temperature is 150°C.  
A sample calculation of the absolute maximum power  
dissipation allowed for a CPGA 176-pin package at military  
temperature is as follows:  
Max. junction temp. (°C) – Max. military temp.  
150°C – 125°C  
----------------------------------------------------------------------------------------------------------------- = ------------------------------------ = 1 . 1 W  
θja (°C/W) 23°C/W  
θja  
θja  
Package Type  
Pin Count  
θjc  
Still Air  
300 ft/min  
Units  
Ceramic Pin Grid Array  
84  
6.0  
4.8  
4.8  
4.6  
3.5  
2.8  
33  
25  
25  
23  
21  
15  
20  
16  
15  
12  
10  
8
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
132  
133  
176  
207  
257  
Ceramic Quad Flat Pack  
84  
7.8  
7.2  
6.8  
6.4  
6.2  
40  
35  
25  
23  
20  
30  
25  
20  
15  
10  
°C/W  
°C/W  
°C/W  
°C/W  
°C/W  
132  
172  
196  
256  
Power Dissipation  
General Power Equation  
The power due to standby current is typically a small  
component of the overall power. Standby power is calculated  
below for commercial, worst-case conditions.  
P = [ICCstandby + ICCactive] * VCC + IOL * VOL * N +  
OH * (VCC – VOH) * M  
I
Family  
ACT 3  
ICC  
VCC  
Power  
10.5 mW  
10.5 mW  
10.5 mW  
15.8 mW  
where:  
CCstandby is the current flowing when no inputs or outputs  
are changing.  
2 mA  
2 mA  
2 mA  
3 mA  
5.25V  
5.25V  
5.25V  
5.25V  
I
1200XL/3200DX  
ACT 2  
I
CCactive is the current flowing due to CMOS switching.  
OL, IOH are TTL sink/source currents.  
OL, VOH are TTL level output voltages.  
N equals the number of outputs driving TTL loads to  
VOL  
M equals the number of outputs driving TTL loads to  
VOH  
I
ACT 1  
V
The static power dissipated by TTL loads depends on the  
number of outputs driving high or low and the DC load  
current. Again, this value is typically small. For instance, a  
32-bit bus sinking 4 mA at 0.33V will generate 42 mW with all  
outputs driving low, and 140 mW with all outputs driving high.  
.
.
Active Power Component  
Accurate values for N and M are difficult to determine  
because they depend on the family type, on the design, and on  
the system I/O. The power can be divided into two  
components—static and active.  
Power dissipation in CMOS devices is usually dominated by  
the active (dynamic) power dissipation. This component is  
frequency dependent, a function of the logic and the external  
I/O. Active power dissipation results from charging internal  
chip capacitances of the interconnect, unprogrammed  
antifuses, module inputs, and module outputs, plus external  
capacitance due to PC board traces and load device inputs.  
An additional component of the active power dissipation is  
the totempole current in CMOS transistor pairs. The net  
effect can be associated with an equivalent capacitance that  
Static Power Component  
Actel FPGAs have small static power components that result  
in power dissipation lower than that of PALs or PLDs. By  
integrating multiple PALs or PLDs into one FPGA, an even  
greater reduction in board-level power dissipation can be  
achieved.  
11