欢迎访问ic37.com |
会员登录 免费注册
发布采购

AD8206 参数 Datasheet PDF下载

AD8206图片预览
型号: AD8206
PDF下载: 下载PDF文件 查看货源
内容描述: G = 0.2 ,电平转换, 16位ADC驱动器 [G = 0.2, Level Translation, 16-Bit ADC Driver]
分类和应用: 驱动器
文件页数/大小: 16 页 / 398 K
品牌: AAVID [ AAVID THERMALLOY, LLC ]
 浏览型号AD8206的Datasheet PDF文件第8页浏览型号AD8206的Datasheet PDF文件第9页浏览型号AD8206的Datasheet PDF文件第10页浏览型号AD8206的Datasheet PDF文件第11页浏览型号AD8206的Datasheet PDF文件第12页浏览型号AD8206的Datasheet PDF文件第13页浏览型号AD8206的Datasheet PDF文件第15页浏览型号AD8206的Datasheet PDF文件第16页  
AD8275  
APPLICATIONS INFORMATION  
10  
0
–10  
DRIVING A SINGLE-ENDED ADC  
The AD8275 provides the common-mode rejection that SAR  
ADCs often lack. In addition, it enables designers to use cost-  
effective, precision, 16-bit ADCs such as the AD7685, yet still  
condition 10 V signals.  
–20  
–30  
–40  
–50  
–60  
–70  
–80  
–90  
One important factor in selecting an ADC driver is its ability to  
settle within the acquisition window of the ADC. The AD8275  
is able to drive medium speed SAR ADCs.  
–100  
–110  
–120  
–130  
–140  
–150  
–160  
–170  
In Figure 38, the 2.7 nF capacitor serves to store and deliver  
necessary charge to the switched capacitor input of the ADC.  
The 33 Ω series resistor reduces the burden of the 2.7 nF load  
from the amplifier and isolates it from the kickback current  
injected from the switched capacitor input of the AD7685. The  
output impedance of the amplifier can affect the THD of the  
ADC. In this case, the combined impedance of the 33 Ω resistor  
and the output impedance of the AD8275 provides extremely  
low THD of −112 dB. Figure 39 shows the ac response of the  
AD8275 driving the AD7685.  
0
1
4
7
10  
2
5
8
3
6
9
FREQUENCY (kHz)  
Figure 39. FFT of AD8275 Directly Driving the AD7685 Using the 5 V  
Reference of the Evaluation Board (Input = 20 V p-p, 1 kHz, THD = −112 dB)  
The AD8275 can condition signals for higher resolution ADCs  
such as 18-bit SAR converters, provided that a narrower  
bandwidth is sampled to limit noise.  
+5V  
DIFFERENTIAL OUTPUTS  
0.1µF  
0.1µF  
In certain applications, it is necessary to create a differential signal.  
For example, high resolution ADCs often require a differential  
input. In other cases, transmission over a long distance can require  
differential signals for better immunity to interference.  
7
+V  
S
50kΩ  
–IN  
10kΩ  
2
5
SENSE  
33Ω  
VDD  
AD7685  
IN+  
Figure 40 shows how to configure the AD8275 to output a  
differential signal. The AD8655 op amp is used in an inverting  
topology to create a differential voltage. VREF sets the output  
midpoint. Errors from the op amp are common to both outputs  
and are thus common mode. Likewise, errors from using  
mismatched resistors cause a common-mode dc offset error.  
Such errors are rejected in differential signal processing by  
differential input ADCs or by instrumentation amplifiers.  
OUT  
6
2.7nF  
IN–  
REF  
GND  
50kΩ  
+IN  
20kΩ  
20kΩ  
3
8
1
VIN  
REF2  
REF1  
VREF  
(ADR444,  
ADR445)  
10µF  
AD8275 –V  
S
4
Figure 38. Driving a Single-Ended ADC  
When using this circuit to drive a differential ADC, VREF can be  
set using a resistor divider from the ADC reference to make the  
output ratiometric with the ADC.  
+5V  
0.1µF  
7
+V  
S
50kΩ  
–IN  
10kΩ  
2
5
6
SENSE  
OUT  
+3.5V  
+V  
OUT  
+2.5V  
+1.5V  
AD8655  
2kΩ  
2kΩ  
V
= 2.5V  
REF  
+10V  
–10V  
50kΩ  
+IN  
20kΩ  
20kΩ  
3
8
1
REF2  
REF1  
8.2µF  
+5V  
0.1µF  
AD8275  
+3.5V  
+2.5V  
+1.5V  
–V  
4
S
–V  
OUT  
Figure 40. AD8275 Configured for Differential Output (for Driving a Differential ADC)  
Rev. A | Page 14 of 16