欢迎访问ic37.com |
会员登录 免费注册
发布采购

AAT3223IGU-3.0-T1 参数 Datasheet PDF下载

AAT3223IGU-3.0-T1图片预览
型号: AAT3223IGU-3.0-T1
PDF下载: 下载PDF文件 查看货源
内容描述: 250毫安纳安级™ LDO线性稳压器,带有电源就绪 [250mA NanoPower™ LDO Linear Regulator with Power-OK]
分类和应用: 稳压器
文件页数/大小: 17 页 / 153 K
品牌: AAT [ ADVANCED ANALOG TECHNOLOGY, INC. ]
 浏览型号AAT3223IGU-3.0-T1的Datasheet PDF文件第9页浏览型号AAT3223IGU-3.0-T1的Datasheet PDF文件第10页浏览型号AAT3223IGU-3.0-T1的Datasheet PDF文件第11页浏览型号AAT3223IGU-3.0-T1的Datasheet PDF文件第12页浏览型号AAT3223IGU-3.0-T1的Datasheet PDF文件第13页浏览型号AAT3223IGU-3.0-T1的Datasheet PDF文件第15页浏览型号AAT3223IGU-3.0-T1的Datasheet PDF文件第16页浏览型号AAT3223IGU-3.0-T1的Datasheet PDF文件第17页  
AAT3223  
250mA NanoPower™ LDO  
Linear Regulator with Power-OK  
High Peak Output Current Applications  
Device Duty Cycle vs. VDROP  
+
(VDROP = 2.8V @ 25°C)  
Some applications require the LDO regulator to  
operate at continuous nominal levels with short  
duration, high-current peaks. The duty cycles for  
both output current levels must be taken into  
account. To do so, one would first need to calcu-  
late the power dissipation at the nominal continu-  
ous level, then factor in the addition power dissipa-  
tion due to the short duration, high-current peaks.  
4
3.5  
3
250mA  
2.5  
2
300mA  
1.5  
1
For example, a 2.8V system using a AAT3223IGU-  
2.8-T1 operates at a continuous 100mA load cur-  
rent level and has short 250mA current peaks. The  
current peak occurs for 378µs out of a 4.61ms  
period. It will be assumed the input voltage is 5.0V.  
0.5  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Duty Cycle (%)  
First, the current duty cycle percentage must be  
calculated:  
Device Duty Cycle vs. VDROP  
(VDROP = 2.8V @ 50°C)  
% Peak Duty Cycle: X/100 = 378ms/4.61ms  
% Peak Duty Cycle = 8.2%  
4
3.5  
3
200mA  
2.5  
2
The LDO regulator will be under the 100mA load  
for 91.8% of the 4.61ms period and have 150mA  
peaks occurring for 8.2% of the time. Next, the  
continuous nominal power dissipation for the  
100mA load should be determined and then multi-  
plied by the duty cycle to conclude the actual  
power dissipation over time.  
300mA  
1.5  
1
250mA  
0.5  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Duty Cycle (%)  
PD(MAX)  
= (VIN - VOUT)IOUT + (VIN x IGND)  
PD(100mA) = (5.0V - 2.8V)100mA + (5.0V x 1.1µA)  
PD(100mA) = 225.5mW  
Device Duty Cycle vs. VDROP  
(VDROP = 2.8V @ 85°C)  
PD(91.8%D/C) = %DC x PD(100mA)  
PD(91.8%D/C) = 0.918 x 225.5mW  
PD(91.8%D/C) = 207mW  
4
3.5  
3
200mA  
100mA  
150mA  
2.5  
2
The power dissipation for a 100mA load occurring  
for 91.8% of the duty cycle will be 207mW. Now  
the power dissipation for the remaining 8.2% of the  
duty cycle at the 150mA load can be calculated:  
1.5  
1
250mA  
300mA  
0.5  
0
0
10  
20  
30  
40  
50  
60  
70  
80  
90  
100  
Duty Cycle (%)  
PD(MAX)  
= (VIN - VOUT)IOUT + (VIN x IGND)  
PD(250mA) = (5.0V - 2.8V)250mA + (5.0V x 1.1µA)  
PD(250mA) = 550mW  
PD(8.2%D/C) = %DC x PD(250mA)  
PD(8.2%D/C) = 0.082 x 550mW  
PD(8.2%D/C) = 45.1mW  
14  
3223.2006.03.1.5  
 复制成功!