欢迎访问ic37.com |
会员登录 免费注册
发布采购

CY2SSTV855 参数 Datasheet PDF下载

CY2SSTV855图片预览
型号: CY2SSTV855
PDF下载: 下载PDF文件 查看货源
内容描述: 差分时钟缓冲器/驱动器 [Differential Clock Buffer/Driver]
分类和应用: 驱动器时钟
文件页数/大小: 6 页 / 93 K
品牌: SPECTRALINEAR [ SPECTRALINEAR INC ]
 浏览型号CY2SSTV855的Datasheet PDF文件第1页浏览型号CY2SSTV855的Datasheet PDF文件第2页浏览型号CY2SSTV855的Datasheet PDF文件第3页浏览型号CY2SSTV855的Datasheet PDF文件第4页浏览型号CY2SSTV855的Datasheet PDF文件第6页  
CY2SSTV855  
Absolute Maximum Conditions[3]  
This device contains circuitry to protect the inputs against  
damage due to high static voltages or electric field; however,  
precautions should be taken to avoid application of any  
voltage higher than the maximum rated voltages to this circuit.  
For proper operation, Vin and Vout should be constrained to the  
range:  
Input Voltage Relative to VSS:...............................VSS – 0.3V  
Input Voltage Relative to VDDQ or AVDD: ............. VDD + 0.3V  
Storage Temperature: ................................ –65qC to + 150qC  
Operating Temperature:................................ –40qC to +85qC  
Maximum Power Supply:................................................3.5V  
VSS < (Vin or Vout) < VDD  
.
Unused inputs must always be tied to an appropriate logic  
voltage level (either VSS or VDD).  
DC Electrical Specifications (AVDD = VDDQ = 2.5V 5%, TA = –40°C to +85°C)[4]  
Parameter  
VID  
Description  
Conditions  
CLKINT, FBINT  
Min.  
Typ.  
Max.  
Unit  
V
Differential Input Voltage[5]  
0.36  
VDDQ + 0.6  
VIX  
Differential Input Crossing Voltage[6] CLKTIN, FBINT  
(VDDQ/2)VDDQ/2 (VDDQ/2) +  
V
0.2  
0.2  
IIN  
Input Current  
VIN = 0V or VIN = VDDQ, CLKINT,  
FBINT  
–10  
10  
µA  
IOL  
Output Low Current  
Output High Current  
Output Low Voltage  
Output High Voltage  
Output Voltage Swing[7]  
Output Crossing Voltage[8]  
VDDQ = 2.375V, VOUT = 1.2V  
VDDQ = 2.375V, VOUT = 1V  
VDDQ = 2.375V, IOL = 12 mA  
VDDQ = 2.375V, IOH = –12 mA  
26  
35  
–32  
mA  
mA  
V
IOH  
–18  
VOL  
VOH  
VOUT  
VOC  
0.6  
1.7  
1.1  
V
VDDQ – 0.4  
V
(VDDQ/2) – VDDQ/2 (VDDQ/2) +  
V
0.2  
–10  
0.2  
10  
300  
12  
IOZ  
High-Impedance Output Current  
Dynamic Supply Current[9]  
PLL Supply Current  
VO = GND or VO = VDDQ  
VDDQ = 170 MHz  
AVDD only  
µA  
mA  
mA  
pF  
IDDQ  
IDD  
235  
9
Cin  
Input Pin Capacitance  
4
AC Electrical Specifications (AVDD = VDDQ = 2.5V 5%, TA = –40°C to +85°C)[10, 11]  
Parameter  
fCLK  
Description  
Conditions  
Min.  
60  
Typ.  
Max.  
170  
60  
Unit  
MHz  
%
Operating Clock Frequency  
Input Clock Duty Cycle[12]  
Maximum PLL lock Time  
AVDD = 2.5V r 0.2V  
tDC  
40  
tLOCK  
100  
2
µs  
tSL(O)  
Output Clocks Slew Rate  
Output Enable Time (all outputs)[13]  
Output Disable Time (all outputs)[13]  
Cycle to Cycle Jitter  
20% to 80% of VOD  
1
V/ns  
ns  
tPZL, tPZH  
tPLZ, tPHZ  
tCCJ  
30  
10  
ns  
f > 66 MHz  
f > 66 MHz  
–100  
–100  
100  
100  
ps  
tJITT(H-PER) Half-period jitter  
ps  
Notes:  
3. Multiple Supplies: The voltage on any input or I/O pin cannot exceed the power pin during power-up. Power supply sequencing is NOT required.  
4. Unused inputs must be held HIGH or LOW to prevent them from floating.  
5. Differential input signal voltage specifies the differential voltage |VTR – VCP| required for switching, where VTR is the true input level and VCP is the comple-  
mentary input level.  
6. Differential cross-point input voltage is expected to track V  
7. For load conditions see Figure 6.  
and is the voltage at which the differential signals must be crossing.  
DDQ  
8. The value of V is expected to be |VTR + VCP|/2. In case of each clock directly terminated by a 120: resistor. See Figure 6.  
OC  
9. All outputs switching loaded with 16 pF in 60: environment. See Figure 6.  
10. Parameters are guaranteed by design and characterization. Not 100% tested in production.  
11. PLL is capable of meeting the specified parameters while supporting SSC synthesizers with modulation frequency between 30 kHz and 33.3 kHz with a  
downspread of –0.5%  
12. While the pulse skew is almost constant over frequency, the duty cycle error increases at higher frequencies. This is due to the formula: duty cycle = t /t ,  
C
WH  
where the cycle time (t ) decreases as the frequency goes up.  
C
13. Refers to transition of non-inverting output.  
14. All differential input and output terminals are terminated with 120:/16 pF as shown in Figure 6.  
Rev 1.0,November 21, 2006  
Page 5 of 6