欢迎访问ic37.com |
会员登录 免费注册
发布采购

LNK354GN-TL 参数 Datasheet PDF下载

LNK354GN-TL图片预览
型号: LNK354GN-TL
PDF下载: 下载PDF文件 查看货源
内容描述: lLinkSwitch -HF系列增强型,高效节能,低功耗离线式开关IC [lLinkSwitch-HF Family Enhanced, Energy Efficient, Low Power Off-Line Switcher IC]
分类和应用: 开关光电二极管
文件页数/大小: 16 页 / 868 K
品牌: POWERINT [ Power Integrations ]
 浏览型号LNK354GN-TL的Datasheet PDF文件第1页浏览型号LNK354GN-TL的Datasheet PDF文件第2页浏览型号LNK354GN-TL的Datasheet PDF文件第3页浏览型号LNK354GN-TL的Datasheet PDF文件第5页浏览型号LNK354GN-TL的Datasheet PDF文件第6页浏览型号LNK354GN-TL的Datasheet PDF文件第7页浏览型号LNK354GN-TL的Datasheet PDF文件第8页浏览型号LNK354GN-TL的Datasheet PDF文件第9页  
LNK353/354  
CY1  
100 pF  
D6  
SS14  
5.7 V,  
400 mA  
T1  
EE16  
5
3
4
5
9
8
J3-2  
C3  
R5  
C6  
2.2 nF  
400 V  
D1  
D2  
68  
R1  
100 kΩ  
R6  
6.8 Ω  
R7  
220 Ω  
330 µF  
16 V  
1N4005 1N4005  
RTN  
J3-1  
C5  
2.2 nF  
R3  
200 Ω  
RF1  
8.2 Ω  
2.5 W  
Q1  
NC NC  
D5  
1N4007GP  
MMST  
3906  
J1  
C1  
C2  
4.7 µF  
400 V  
VR1  
BZX79B5V1  
5.1 V, 2%  
85-265  
VAC  
4.7 µF  
400 V  
R8  
390 Ω  
R4  
5.1 kΩ  
J2  
D
S
R9  
200 Ω  
FB  
BP  
LinkSwitch-HF  
U1  
LNK354P  
D3  
D4  
1N4005 1N4005  
U2B  
U2A  
R10  
2.4 Ω  
1 W  
PC817D PC817D  
C4  
100 nF  
L1  
1 mH  
PI-3891-070204  
Figure 5. Universal Input, 5.7 V, 400 mA, Constant Voltage, Constant Current Battery Charger Using LinkSwitch-HF.  
Output rectification is provided by Schottky diode D6. The low  
forward voltage provides high efficiency across the operating  
range and the low ESR capacitor C6 minimizes output voltage  
ripple.  
Applications Example  
A 2.4 W CC/CV Charger Adapter  
The circuit shown in Figure 5 is a typical implementation of  
a 5.7 V, 400 mA, constant voltage, constant current (CV/CC)  
battery charger.  
In constant voltage (CV) mode, the output voltage is set by the  
ZenerdiodeVR1andtheemitter-basevoltageofPNPtransistor  
Q1. The VBE of Q1 divided by the value of R7 sets the bias  
current through VR1 (~2.7 mA). When the output voltage  
exceeds the threshold voltage determined by Q1 and VR1, Q1  
is turned on and current flows through the LED of U2. As the  
LED current increases, the current fed into the FEEDBACK  
pin increases, disabling further switching cycles of U1. At  
very light loads, almost all switching cycles will be disabled,  
giving a low effective switching frequency and providing low  
no-load consumption.  
The input bridge formed by diodes D1-D4, rectifies the AC  
input voltage. The rectified AC is then filtered by the bulk  
storage capacitors C1 and C2. Resistor RF1 is a flameproof,  
fusible, wire wound type and functions as a fuse, inrush current  
limiter and, together with the π filter formed by C1, C2 and L1,  
differential mode noise attenuator.  
This simple EMI filtering, together with the frequency jittering  
of LinkSwitch-HF (U1), a small value Y1 capacitor (CY1),  
and shield windings within T1, and a secondary-side RC  
snubber (R5, C5), allows the design to meet both conducted  
and radiated EMI limits. The low value of CY1 is important  
to meet the requirement of low line frequency leakage current,  
in this case <10 µA.  
Duringloadtransients,R6andR8ensurethattheratingsofQ1are  
not exceeded while R4 prevents C4 from being discharged.  
Resistors R9 and R10 form the constant current (CC) sense  
circuit. Above approximately 400 mA, the voltage across the  
senseresistorexceedstheoptocouplerdiodeforwardconduction  
voltage of approximately 1 V. The current through the LED  
is therefore determined by the output current and CC control  
dominatesovertheCVfeedbackloop.CCcontrolismaintained  
even under output short circuit conditions.  
The rectified and filtered input voltage is applied to the primary  
winding of T1. The other side of the transformer primary is  
driven by the integrated MOSFET in U1. Diode D5, C3, R1  
and R3 form the primary clamp network. This limits the peak  
drain voltage due to leakage inductance. Resistor R3 allows the  
use of a slow, low cost rectifier diode by limiting the reverse  
current through D5 when U1 turns on. The selection of a slow  
diode improves efficiency and conducted EMI.  
F
2/05  
4