欢迎访问ic37.com |
会员登录 免费注册
发布采购

INN3674C-H601-TL 参数 Datasheet PDF下载

INN3674C-H601-TL图片预览
型号: INN3674C-H601-TL
PDF下载: 下载PDF文件 查看货源
内容描述: [IC OFFLINE SWITCH SR CONTROL]
分类和应用: 开关光电二极管
文件页数/大小: 30 页 / 2447 K
品牌: POWERINT [ Power Integrations ]
 浏览型号INN3674C-H601-TL的Datasheet PDF文件第5页浏览型号INN3674C-H601-TL的Datasheet PDF文件第6页浏览型号INN3674C-H601-TL的Datasheet PDF文件第7页浏览型号INN3674C-H601-TL的Datasheet PDF文件第8页浏览型号INN3674C-H601-TL的Datasheet PDF文件第10页浏览型号INN3674C-H601-TL的Datasheet PDF文件第11页浏览型号INN3674C-H601-TL的Datasheet PDF文件第12页浏览型号INN3674C-H601-TL的Datasheet PDF文件第13页  
InnoSwitch3-EP  
Applications Example  
ꢇ10  
ꢅꢄ0 ꢈꢉ  
ꢌꢆ0 ꢋꢏꢇ  
ꢋRꢌ  
ꢐꢑꢏꢒ8ꢋꢌꢂ1ꢃꢂꢉ  
8.ꢌ ꢋ  
ꢀꢁ ꢂꢃ ꢄꢅꢆ ꢇ  
1
ꢉꢍ1  
ꢍꢌ  
10 µꢎ  
ꢇꢌ1 Rꢌꢆ  
1 ꢚꢉ ꢃ0 Ω  
ꢌ00 ꢋ 1/8 ꢘ  
ꢇ1ꢅ  
ꢌ.ꢌ µꢉ  
ꢇ1ꢓ  
ꢊ80 µꢉ  
1ꢊ ꢋ  
Rꢃ0  
Rꢌꢄ  
1.ꢌ ꢑΩ  
1ꢛ  
100 Ω  
1/10 ꢘ  
ꢌꢆ ꢋ  
ꢀꢁ ꢂ  
ꢉꢊꢋ  
ꢇꢌꢅ  
ꢌ.ꢌ ꢚꢉ  
ꢆ0 ꢋ  
1/1ꢊ ꢘ  
ꢉꢍꢌ  
ꢇꢅ  
1000 ꢈꢉ  
ꢊꢃ0 ꢋ  
Rꢃ  
ꢌ ꢑΩ  
1ꢛ  
R8  
ꢌ00 ꢗΩ  
ꢜꢌ  
ꢏꢝꢅꢅ8ꢊ  
ꢈ ꢂꢃ ꢄꢅ3 ꢇ  
ꢍꢃ  
10 µꢎ  
Rꢌꢅ  
ꢇꢌꢌ  
ꢙR1  
Rꢌꢓ  
ꢊꢌ 1 ꢚꢉ  
R1ꢊ  
Dꢉ08ꢐ  
800 ꢋ  
100 Ω  
1/10 ꢘ  
ꢇ18  
ꢆꢊ0 µꢉ  
ꢊ.ꢃ ꢋ  
1/8 ꢘ ꢌ00 ꢋ  
1ꢃꢃ ꢗΩ  
1ꢛ  
D1  
Rꢌꢌ DꢉꢍR1ꢊ00ꢂꢄ  
ꢊ8 Ω  
ꢊ00 ꢋ  
ꢇꢌꢃ  
ꢌ.ꢌ ꢚꢉ  
ꢆ0 ꢋ  
1/1ꢊ ꢘ  
Rꢅ  
1.8 ꢑΩ  
1ꢛ  
ꢖꢇ  
ꢜ1  
ꢏꢝꢊꢅꢌ0  
ꢇꢌ  
10 µꢉ  
ꢅ00 ꢋ  
ꢇꢃ  
10 µꢉ  
ꢅ00 ꢋ  
ꢉ1  
1 ꢏ  
R1ꢃ  
ꢃꢃ.ꢌ ꢗΩ  
1ꢛ  
ꢔ1  
ꢕꢕ1ꢊꢌ1  
Rꢓ  
Rꢔ1  
10 Ω  
1/1ꢊ ꢘ  
ꢅꢄ Ω  
ꢇ1ꢌ  
ꢌ.ꢌ µꢉ  
ꢌꢆ ꢋ  
1/10 ꢘ  
ꢇꢄ  
Dꢄ  
ꢌ.ꢌ µꢉ  
ꢇ8  
ꢃꢃ0 ꢈꢉ  
ꢆ0 ꢋ  
ꢔꢄ - ꢁꢕꢈ  
ꢂꢇꢒ  
DꢉꢍR1ꢌ00ꢂꢄ  
ꢌꢆ ꢋ  
ꢋR1  
ꢑꢑꢐꢒꢆꢌꢃ1ꢙꢂꢄꢂꢉ  
S
Dꢃ  
R1ꢌ  
0.ꢌ Ω  
1ꢛ  
ꢙꢏꢋꢌ1ꢘꢐꢂꢄꢂꢉ  
ꢒꢎꢋꢊꢉꢎꢓ  
Rꢌꢊ  
ꢏꢑ  
ꢃꢊ Ω  
Rꢊ  
ꢊ.ꢌ ꢗΩ  
1/10 ꢘ  
1/10 ꢘ  
ꢑPP  
IS  
InnoSwitch3-EP  
ꢞ1  
ꢇꢊ  
ꢅ.ꢄ µꢉ  
1ꢊ ꢋ  
ꢇꢆ  
ꢌꢌ µꢉ  
ꢆ0 ꢋ  
ꢍ1  
ꢃꢃ0 µꢎ  
ꢁꢖꢖꢃꢊꢄꢌꢇꢂꢎꢊ0ꢌ  
ꢉꢊꢋ  
ꢀꢁꢂ8ꢃꢄꢅꢂ0ꢆ1818  
Figure 9. Schematic DER-611, 5 V, 0.3 A and 12 V, 0.7 A for HVAC (Heating, Ventilation and Air-Conditioning) Application.  
The circuit shown in Figure 9 is a low cost 5 V, 0.3 A and 12 V, 0.7 A  
dual output power supply using INN3672C. This dual output design  
features high efficient design satisfying cross regulation requirement  
without a post-regulator.  
the transformer is rectified by SR FET Q1 and filtered by capacitor  
C18. High frequency ringing during switching transients that would  
otherwise create radiated EMI is reduced via a snubber (resistor R24  
and capacitor C22). The 12 V secondary of the transformer is rectified  
by SR FET Q2 and filtered by capacitor C19. High frequency ringing  
during switching transients that would otherwise create radiated EMI  
is reduced via a snubber (resistor R25 and capacitor C21).  
Bridge rectifier BR1 rectifies the AC input supply. Capacitors C2 and  
C3 provide filtering of the rectified AC input and together with  
inductor L1 form a pi-filter to attenuate differential mode EMI.  
Y capacitor C10 connected between the power supply output and  
input help reduce common mode EMI.  
Synchronous rectifications (SR) are provided by MOSFETs Q1 and Q2.  
Q1 and Q2 are turned on by the secondary-side controller inside IC  
U1, based on the winding voltage sensed via resistor R9 and fed into  
the FORWARD pin of the IC.  
Thermistor RT1 limits the inrush current when the power supply is  
connected to the input AC supply.  
In continuous conduction mode of operation, the MOSFET is turned  
off just prior to the secondary-side’s commanding a new switching  
cycle from the primary. In discontinuous conduction mode of  
operation, the power MOSFET is turned off when the voltage drop  
across the MOSFET falls below 0 V. Secondary-side control of the  
primary-side power MOSFET avoids any possibility of cross  
conduction of the two MOSFETs and provides extremely reliable  
synchronous rectification.  
Input fuse F1 provides protection against excess input current  
resulting from catastrophic failure of any of the components in the  
power supply. One end of the transformer primary is connected to  
the rectified DC bus; the other is connected to the drain terminal of  
the MOSFET inside the InnoSwitch3-EP IC (U1).  
A low-cost RCD clamp formed by diode D1, resistors R22, R8, and  
capacitor C4 limits the peak drain voltage of U1 at the instant of  
turn-off of the MOSFET inside U1. The clamp helps to dissipate the  
energy stored in the leakage reactance of transformer T1.  
The secondary-side of the IC is self-powered from either the  
secondary winding forward voltage or the output voltage. Capacitor  
C7 connected to the SECONDARY BYPASS pin of InnoSwitch3-EP IC  
U1, provides decoupling for the internal circuitry.  
The InnoSwitch3-EP IC is self-starting, using an internal high-voltage  
current source to charge the PRIMARY BYPASS pin capacitor (C6)  
when AC is first applied. During normal operation the primary-side  
block is powered from an auxiliary winding on the transformer T1.  
Output of the auxiliary (or bias) winding is rectified using diode D7  
and filtered using capacitor C5. Resistor R6 limits the current being  
supplied to the PRIMARY BYPASS pin of InnoSwitch3-EP IC (U1). The  
latch off primary-side overvoltage protection is obtained using Zener  
diode VR1 with current limiting resistor R26.  
Total output current is sensed by R12 between the IS and GROUND  
pins with a threshold of approximately 35 mV to reduce losses. Once  
the current sense threshold is exceeded the device adjusts the  
number of switch pulses to maintain a fixed output current.  
The output voltages are sensed via resistor divider R13, R16, and  
R27, and output voltages are regulated so as to achieve a voltage of  
1.265 V on the FEEDBACK pin. The 12 V phase boost circuit, R30 and  
C24, in parallel with 12 V feedback resistor, R27, and 5 V phase boost  
circuit, R29 and C23, in parallel with 5 V feedback resistor, R16,  
reduce the output voltage ripples. Capacitor C8 provides noise  
The secondary-side controller of the InnoSwitch3-EP IC provides  
output voltage sensing, output current sensing and drive to a  
MOSFET providing synchronous rectification. The 5 V secondary of  
9
Rev. D 08/18  
www.power.com