欢迎访问ic37.com |
会员登录 免费注册
发布采购

A1020B-2CQ84B 参数 Datasheet PDF下载

A1020B-2CQ84B图片预览
型号: A1020B-2CQ84B
PDF下载: 下载PDF文件 查看货源
内容描述: ACT 1系列FPGA [ACT 1 Series FPGAs]
分类和应用:
文件页数/大小: 24 页 / 163 K
品牌: ACTEL [ Actel Corporation ]
 浏览型号A1020B-2CQ84B的Datasheet PDF文件第4页浏览型号A1020B-2CQ84B的Datasheet PDF文件第5页浏览型号A1020B-2CQ84B的Datasheet PDF文件第6页浏览型号A1020B-2CQ84B的Datasheet PDF文件第7页浏览型号A1020B-2CQ84B的Datasheet PDF文件第9页浏览型号A1020B-2CQ84B的Datasheet PDF文件第10页浏览型号A1020B-2CQ84B的Datasheet PDF文件第11页浏览型号A1020B-2CQ84B的Datasheet PDF文件第12页  
E q u iv a le n t C a p a c it a n c e  
CEQM = Equivalent capacitance of logic modules in pF  
CEQI = Equivalent capacitance of input buffers in pF  
The power dissipated by a CMOS circuit can be expressed by  
the Equation 1.  
CEQO = Equivalent capacitance of output buffers in pF  
Power (uW) = CEQ * VCC2 * F  
(1)  
CEQCR = Equivalent capacitance of routed array clock in  
pF  
Where:  
CEQ is the equivalent capacitance expressed in pF.  
CL  
fm  
fn  
= Output lead capacitance in pF  
V is the power supply in volts.  
= Average logic module switching rate in MHz  
= Average input buffer switching rate in MHz  
= Average output buffer switching rate in MHz  
CC  
F is the switching frequency in MHz.  
Equivalent capacitance is calculated by measuring ICCactive  
at a specified frequency and voltage for each circuit  
component of interest. Measurements have been made over a  
fp  
fq1  
= Average first routed array clock rate in MHz (All  
families)  
range of frequencies at a fixed value of V . Equivalent  
CC  
capacitance is frequency independent so that the results may  
be used over a wide range of operating conditions. Equivalent  
capacitance values are shown below.  
F ix e d C a p a c it a n c e Va lu e s fo r Ac t e l F P G As  
(p F )  
r1  
C
Va lu e s fo r Ac t e l F P G As  
E Q  
Device Type  
A1010B  
routed_Clk1  
41.4  
68.6  
40  
A10V10B  
A10V20B  
A1010B  
A1020B  
A1020B  
Modules (CEQM  
Input Buffers (CEQI  
Output Buffers (CEQO  
Routed Array Clock Buffer  
Loads (CEQCR  
)
3.2  
10.9  
11.6  
3.7  
22.1  
31.2  
A10V10B  
A10V20B  
)
65  
)
De t e r m in in g Av e r a g e S w it c h in g F r e q u e n c y  
To determine the switching frequency for a design, you must  
have a detailed understanding of the data input values to the  
circuit. The following guidelines are meant to represent  
worst-case scenarios so that they can be generally used to  
predict the upper limits of power dissipation. These  
guidelines are as follows:  
)
4.1  
4.6  
To calculate the active power dissipated from the complete  
design, the switching frequency of each part of the logic must  
be known. Equation 2 shows a piece-wise linear summation  
over all components.  
Logic Modules (m)  
90% of modules  
#inputs/4  
Power = V 2 * [(m * CEQM * fm)modules  
+
CC  
Inputs switching (n)  
(n * CEQI* fn)inputs + (p * (CEQO+ CL) * fp)outputs  
0.5 * (q1 * CEQCR * fq1)routed_Clk1  
(r1 * fq1)routed_Clk1  
+
Outputs switching (p)  
First routed array clock loads (q1)  
Load capacitance (CL)  
#outputs/4  
40% of modules  
35 pF  
+
]
(2)  
Where:  
Average logic module switching rate (fm) F/10  
m
n
= Number of logic modules switching at fm  
= Number of input buffers switching at fn  
= Number of output buffers switching at fp  
Average input switching rate (fn)  
Average output switching rate (fp)  
F/5  
F/10  
p
Average first routed array clock rate F  
(fq1)  
q1  
= Number of clock loads on the first routed array  
clock (All families)  
r1  
= Fixed capacitance due to first routed array  
clock (All families)  
1 -2 9 0